User Tools

Site Tools


lecture_notes:04-05-2010

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
lecture_notes:04-05-2010 [2010/04/16 00:46]
learithe
lecture_notes:04-05-2010 [2010/04/16 01:16] (current)
karplus fixed citations to use Refnotes syntax
Line 33: Line 33:
  
 Assembly Review Articles: Assembly Review Articles:
-  * [[http://​www.sciencedirect.com/​science?​_ob=ArticleURL&​_udi=B6WG1-4YJ6GD8-1&​_user=10&​_coverDate=03%2F06%2F2010&​_rdoc=1&​_fmt=high&​_orig=search&​_sort=d&​_docanchor=&​view=c&​_searchStrId=1282691739&​_rerunOrigin=google&​_acct=C000050221&​_version=1&​_urlVersion=0&​_userid=10&​md5=32c08d11cc10fd1eefca0f8a8def738b|Assembly algorithms for next-generation sequencing data]] +  * Jason R. Miller, Sergey Koren and Granger Suttona ​[(cite:​Miller2010>​Jason R. Miller, Sergey Koren, Granger Sutton, Assembly algorithms for next-generation sequencing data, Genomics, In Press, Corrected Proof, Available online 6 March 2010, ISSN 0888-7543, DOI: 10.1016/​j.ygeno.2010.03.001 ​http://​www.sciencedirect.com/​science/article/B6WG1-4YJ6GD8-1/​2/​ae6c957910e4ea658cdebff4a0ce9793)\\ Covers these assemblers: SSAKE, SHARCGS, VCAKE, Newbler, Celera, Euler, Velvet, ABySS, AllPaths, and SOAPdenovo.Compares de Bruijn graph to overlap/​layout/​consensus.
- +
-  Jason R. MillerSergey Koren and Granger Suttona+
   ​   ​
-  Covers these assemblers: SSAKE, SHARCGS, VCAKE, Newbler, Celera, Euler, Velvet, ABySS, AllPaths, and SOAPdenovo. + 
-   +
-  Compares de Bruijn graph to overlap/​layout/​consensus. +
-   +
-  Jason R. Miller, Sergey Koren, Granger Sutton, Assembly algorithms for next-generation sequencing data, Genomics,  +
-  In Press, Corrected Proof, Available online 6 March 2010, ISSN 0888-7543, DOI: 10.1016/​j.ygeno.2010.03.001. +
-  (http://​www.sciencedirect.com/​science/​article/​B6WG1-4YJ6GD8-1/​2/​ae6c957910e4ea658cdebff4a0ce9793) +
-  Keywords: Genome assembly algorithms; Next-generation sequencing +
- +
- +
 =====Assembly Overview===== =====Assembly Overview=====
  
Line 70: Line 58:
       * Expect half your reads to have an error in them.       * Expect half your reads to have an error in them.
   * Contiguous chromosomes with a low error rate ( output from assemblers).   * Contiguous chromosomes with a low error rate ( output from assemblers).
-    * Bermuda standard for a finished genome should have an error rate of 1 x 10^-5 bases. (see comment below)+    * Bermuda standard for a finished genome should have an error rate of 1 x 10^-5 bases.1) [(cite:​Bermuda1>​[[http://​www.genome.gov/​page.cfm?​pageID=10506376]])] [(cite:​Bermuda2>​[[http://​www.ornl.gov/​sci/​techresources/​Human_Genome/​research/​bermuda.shtml]])]
     * To reduce error rate in short reads, stack up many reads and take the most common base at each position.     * To reduce error rate in short reads, stack up many reads and take the most common base at each position.
   * How much data do we have?   * How much data do we have?
Line 109: Line 97:
     - Can find repeat regions using paired-end data.     - Can find repeat regions using paired-end data.
   * Most resquencing projects map reads to scaffolds and create contigs based upon mapping. Sections with missing read data can be assumed to be a deleting or an alteration to the existing scaffold.   * Most resquencing projects map reads to scaffolds and create contigs based upon mapping. Sections with missing read data can be assumed to be a deleting or an alteration to the existing scaffold.
 +
 +
 +===== References =====
 +<​refnotes>​notes-separator:​ none</​refnotes>​
 +~~REFNOTES cite~~
 +
 +
lecture_notes/04-05-2010.txt · Last modified: 2010/04/16 01:16 by karplus