Assembly of the Ariolimax
dolicophallus genome with
Discovar de novo

Chris Eisenhart, Robert Calef, Natasha Dudek,

Gepoliano Chaves



Overview

-Introduction

-Pair correction and filling
-Assembly theory overview
-User experience and installation
-Sequence preprocessing
-Documentation and results




Discovar de novo

Discovar de novo is a large/small genome

assembler
Developed by the Broad Institute (MA)

o http://www.broadinstitute.org/software/discovar/blog/

Generates accurate and complete
assemblies



Discovar de novo

e Discovar de novo requires a single lllumina

fragment library (paired end)
e A PCR-free protocol, ~450bp insert size, and ~60X

coverage are recommended (SPRI beads).

e 250bp (recommended for the assembler) or higher
paired reads will be created by the sequencing
machine



Discovar de novo

e Reads as short as 150bp may work with Discovar
de novo, depending on fragment size and other

factors.
e This will however require algorithmic modifications



Discovar de novo

e Other sequencing technologies such as 454, SOLID
and PacBio may not be used. The assembler is
restricted to lllumina.



Unipaths and unipath graphs

-Unipath

- An unambiguous path. Formally: Let x,...x_ be a sequence of adjacent k-
mers in the de Bruijn graph such that x....x . have outdegree 1 and x,...x_ have
indegree one, any extension of violates this constraint —path

- Similar to U-U contigs in meraculous -\ /

-Unipath graph "\ /
- Like a de Bruijn graph, with unipaths L R
for edges. Nodes are still k-mers /-/ \-\

® Butler et al. PMID: 18340039



Stage 1: Preliminary graph

- Reads are error corrected

- Pairs are closed

- Pair closures are merged into a graph
Stage 2: Optimization of graph

- Simplify and improve the graph



Pair correction and filling

Precorrection 1

Pair filling 1

Quality score lowering

Precorrection 2

Pair filling 2

Pair correction and filling



Precorrection 1

- Perform a sort to bring together 25-mers with same initial and final A

12-mers 30

- Focus only on central base: what should the true call be? A
- Calculate sum of quality scores for each possible calls 30
- Winner call = base with highest sum of quality scores T
- Loser call = base with no more than 1 call of quality 20+ and 10
sum of quality scores must be 1/4th that of the winner ?O

- Repeat for all 25-mers

- Correct isolated loser calls, set quality score to O



Pair filling 1

Purpose: fill pairs that are easy to define as having a
unique, unambiguous closure
- Consider all 60-mers in a read that occur >5X in the

dataset and exclude all 60-mers that occur after this within

a read not meeting this criteria
- Form unipath graph according to these truncated reads

Ll

Truncate



Quality score lowering
ACTTGATAGGIACCTAGATTAHGATAGCT

30 32 30 29 40 30 29 31 30

l

Reset to 29

ﬁﬁﬁﬁt ]

Per base sequence quality
of raw reads




Precorrection 2

- Done twice, first with k=24, then k=40 > —

- Take every read, one at a time = founder read

- Create stack of friends for founder 1 i
- Gap free alignment with perfect k-mer matches

- Truncate friends extending past founder (1)
- Clean the stack (2) by removing friends with Q30 difference
or high quality window difference 2 i‘

Consensus sequence



Precorrection 2

: e
- Determine consensus sequence (3) —
T ——

- Quality scores of 1 or 2 are changed to 0.2 — > 5
- For each possible call in a column, calculate quality score sum 1 i
(winner = highest sum)
- Deduct top quality score from non-winners’ quality score sum >
- Test if winner call should be accepted: X

- Winner’s quality score sum must be at least 50 ¢

- The winning sum must be at least 10X that of the runner up >

- The runner up sum must be at most 100
- If winner is accepted and it disagrees with the founder, correct 3 ‘L

founder and set quality score to O
Consensus sequence



Pair filling 2

- Same general method as pair filling 1
- K=80

- Truncation according to first spot where an 80-mer has a difference from the
consensus sequence



Pair correction and filling

Forward Reverse
> -
> —
> <
> > < <
> <
>

- Create stacks of friends for pairs of founder reads
- Use k=40
- Allow extension to the right of each read
- Do not proceed with low quality founder pairs
- Let a = mean quality of bases in founder pair
- Let b = mean quality of all bases in all friend reads
- If b exceeds a by more than 20, do not proceed



Pair correction and filling

-Remove friends with “inadequate glue”
- Find intervals of maximal agreement with founder
- Compress homopolymers longer than 10 to be 10
- To be adequately glued, after compression there must be an interval of
agreement of length > 20
- For every base that with a quality score between 0-30, consider raising the
quality score to 30 (internal to EC)
- Examine 11-bp long windows
1. Are there 3 friends that agree at central base and have quality > 30
2. Are there 3 friends that disagree at central base and have quality > 30
- If 1 but not 2, correct. If both 1 and 2, do not correct



Pair correction and filling

- Consider deletion of more friends based on repeating, different sequences
- Scan 10-bp non-overlapping windows
- If any sequence occurs as often as the founder sequence, and any single friend
contains that sequence and has a quality score of over 20 at the middle bases, delete
all friends with that sequence

- Clean stack by removing friends with Q30 difference with founder



Pair correction and filling

Forward _(Reverse

A

A

~

>
.
>

AA

Y
A

Y
A

~
>

A

Y

Y

Y

Take reverse complement of
reverse reads

7
Y

>
=g >
> > >
> >
> >
)_P >
>




Pair correction and filling

- Compute consensus sequence for each stack (as done in Precorrection 2) and

correct reads

- Compute candidate offsets by looking for overlapping 8-mers

- Candidates are evaluated based on the number of mismatches per 20bp window.
High numbers of mismatches are discarded.

- Next compare offsets and allow certain offsets to invalidate others:

Offset i:

ACTTGGATATTTT
TGAACCTATAAAA

Offset j:

TGCATGACTTGG
TCTGCTTGAACC

Offset j invalidates offset i



Pair correction and filling

> >
>
> > >
> > > 5
=
> >

- Create joint stack for each combination of potential offsets
- Raise quality scores (as previously described)
- Remove friends with Q30 difference



Pair correction and filling

- Calculate quality score sum for each call at each position
- If the winning sum is > 100 and 10X the runner up, and the runner up sum is <100,

remove any friends that disagree and have quality > 30

- Create consensus sequence (as done in Precorrection 2)

- Compute quality scores for consensus sequence
- If a base and flanking ‘d’” bases agree with consensus, and are >0 but <10*log10
(2d)*0.5, raise quality score to 10*log10(2d)*0.5
- Compute sum of quality scores for each column
- Let x = difference between winner and runner up
- If x < 50, quality score =x. If x > 50, quality score = 50



Pair correction and filling

Test for inconsistencies with quality scores:

a) Look at quality score sum of runner up call.
- If it was >100 and supported by > 2 Q30 bases, declare the column inconsistent and
set consensus g=0
b) “Protect” certain bases in the founders.
- Take 10 bases on the left.
- If any founder base disagrees with the consensus and has a quality score > 20, force
consensus sequence to mirror founder.
- Repeat for 10 bases on the right.



Pair correction and filling

Test for inconsistencies with quality scores (continued):

c) If any base on the founder has a quality score > 30, and disagrees with the
consensus, set consensus g=0

d) Check for inconsistencies between founders and consensus sequence
- If the founder disagrees but the 5 flanking bases agree, and > 3 other rows
agree with the founder, set quality to O



Pair correction and filling

Recover conflicted columns in consensus:
(columns with low quality score)

- Let minqg_floor = 10 if there is more than one offset, otherwise 5

- Look at columns in the consensus that have a lower quality score than the
ming_floor threshold, and for which at least 1 founder has g> 2

- For a given base call that disagrees with the founder, delete all rows containing that
base call.

- Recompute consensus and consensus quality scores for the joint stack



Pair correction and filling

Decide if a closure is accepted:

1. The minimum consensus quality must be > 10
2. It must be possible to walk across the consensus using only intervals of perfect
overlap of length > 40, while requiring that consecutive intervals overlap by > 30



Pair correction and filling

Decide if a closure is accepted:

1. The minimum consensus quality must be > 10

It must be possible to walk across the consensus using only intervals of perfect
overlap of length > 40, while requiring that consecutive intervals overlap by > 30
Report closures:

N

1. Examine consensus sequences from all offsets, report left and rightmost maximal
agreeing segment
2. If left and rightmost segments are the same, just report one



Pair correction and filling

Identify pairs that were not closed but that bridge gaps:

- Look for 40-mers that are near the edge of the gap (within 200bp)
-For all “special” read pairs with such a 40-mer, redo error correction and pair filling
step with more lenient settings



Assembly theory

-Graph formation
- Initial graph is exactly the unipath graph

-Graph simplification and improvement




Simplification and improvement

- Reverse complement removal
- Hanging end removal

- Remove small components

- Delete low coverage edges

- Assembly unwinding




Simplification and improvement

- Pull apart simple branches

- Pull apart complex branches
- Bubble popping

- Graph reconstruction

- Make and unroll loops



Simplification and improvement

- Remove weakly supported loops

- Delete weakly competing edges

- Graph cleaning using the uncorrected reads
- Gulp edges

- Orient assembly to reference



User experience: Installation

- Prerequisites:

-GCC 4.7+
- jemalloc 3.6.0+

- Standard pipeline:
configure - make — make install



User experience: GCC

The wrong way:

Compile and link the dependencies:

- GMP, MPFR MPC (floating point arithmetic libraries)
- Each in a separate directory

Attempt to configure with libraries all over the place:

.Jconfigure --with-gmp=/some/silly/path/gmp --with-mpfr=/some/silly/path/mpfr --with-mpc=/some/silly/path/mpc

This is silly and causes major problems for anyone who doesn't understand how dynamic linkers find libraries at
runtime. Do not do this.

https://gcc.gnu.org/wiki/InstallingGCC



User experience: GCC

The right way:
Let GCC do all the work:

tar xzf gcc-4.9.2.tar.gz
cd gcc-4.9.2

./contrib/download_prerequisites <- Downloads and Conflgures prequisites
cd ..

mkdir objdir

cd objdir

$PWD/../gcc-4.9.2/configure --prefix=$HOME/gcc-4.9.2

make

make install

https://gcc.gnu.org/wiki/InstallingGCC



User experience: Installation

- Prerequisites:

-GCC 4.7+ v
- jemalloc 3.6.0+

- Jemalloc:
configure - make — make install

.Jconfigure --prefix=$HOME/jemalloc/
make
make install



User experience: Installation

- Prerequisites:

-GCC 4.7+ v
- jemalloc 3.6.0+ v/

- Last but not least:

/configure CC=$HOME/gcc-4.9.2/bin/gcc --prefix=$HOME/discovar/install_dir/ --with-jemalloc=$HOME/jemalloc/lib/
make
make install



Syntax for Discovar de novo

Assembly

e Discovar READS = reads.bam OUT_DIR=my assembly

e Takes all reads in BAM file, generates an assembly and
writes output to my_assembly directory

e final assembly is located in my assembly/a.final/



User experience: Running

-Picky command line syntax
-No white space

EX READS="frac:0.05,sample:18H: :/scratch/bananaSlugBAMS/SWO18_S1 L \

007_001.bam+frac:0.05,sample:19M::/scratch/bananaSl1ugBAMS/SWO19 \
_S1_L601_6e0l.bam+frac:0.05,sample:19H::/scratch/bananaS1ugBAMS/ \

SWe19_S2_L008_001.bam" OUT_DIR=/scratch/bananaSlugAssemblies



User experience: Running

-Picky command line syntax
-Discovar denovo option ‘frac’

- Lets user define a subset of the data

-Ran with 1%, 5% and 10% of the data

- Verify assembly plausibility



Sequence preparation

- FastQC

- Preqc

- Skewer (adapter trimming)

- fastuniq (PCR duplicate removal)

- Conversion to BAM format required



fastuniq: Rationale

-Designed for PCR-free libraries
-Reduce memory footprint
-Could bias error correction




de novo duplicate removal

- as opposed to mapping-based (Picard)
- implemented in C

Merge sort — step 2:

Low RAM footprint:

35.6 GB for 16.6 gigabases of data

Step 3:

Raw read pairs

.

Step 1:

Importing

{

Sorting

¢

Identifying duplicates

.

Unique read pairs

Xu et al. PMCID: PMC3527383




BAM conversion rationale

-Quality representation

-Fastq uses several quality score representations

-Paired data representation

-Fastq format stores read pairs in two separate files

-BAM compression

- Binning scheme makes access easier
- Compression uses less disk space



BAM conversion rationale

-BAM files offer increased documentation

potential
- Optional fields can be filled

- Optional flag for identifying unaligned sequences



Fastq to BAM

-Picard toolset
-java .jar files
-Used program fastgToSam

- Converts fastq forward and reverse files into a single bam file




Results: Fastq vs Bam

- Bam

- 3 data files
- 47 qigs total

- Fastq

- 6 data files
- 55 gigs total (zipped)
- 150 gigs total (unzipped)



Documentation

- Wiki page was made

-https://banana-slug.soe.ucsc.edu/team 5 page

- Bam files added to corresponding data pages


https://banana-slug.soe.ucsc.edu/team_5_page

BME235 wiki page

€ > C A & httpsy//banana-slug.soe.ucsc.edu ©

Login

Banana Slug Genomics

ns - start

Table of Contents

=
|‘ Banana

Banana slug genomics
Reborn - Spring 2015

Welcome back, Banana Slug Genomics! Following the successful &/ crowdfunding campaign, this class and
effort will be rebooted

Spring 2015 syllabus The lecture schedule and registered note takers
Data overview Raw data and associated analysis

_> Teams Each team is attempting an assembly with a different program
Complete guide for modifying the wiki
Complete guide to campusRocks and S
Budget

Important pages of this wiki

Computer resources describes the computers and file systems available for this class, how to get an account, how the directories are
organized, how to get file permissions set correctly, and so forth

Banana Slug Genome Browser will have a UCSC genome browser, once we get to the point of having few enough contigs that building a
browser makes sense

Style guide will have suggestions for organizing content on the wiki

Lecture notes will have pointers to notes taken by the students for each lecture. Two students will be designated each lecture to take
notes, but others are encouraged to add their own notes to the wiki pages

Other mollusk genomes has a list of other mollusks that have been sequenced, and where the data for them is. Prior mollusk genomes




Teams homepage

I/ & teams [Banana Slug Gene x

€« C AN @ https

banana-slug.soe.ucsc.edu/t

Login

Trace: - team_!

Assembly Teams

Number | Team members Assembler Documentation notes | Team page

1 Cole, McGovern, Houser, Richardson = & Meraculous

2 Matthew, Markello, Saremi & SOAP denovo SOAPdenovo2

3 Espinoza, Kan, Musselman-Brown @ SGA 0.10.13

4 Copher, Feal, Hussain @ ABySS

5 Chaves, Calef, Dudek, Eisenhart @ Discovar denovo Team 5 4—

You could leave a comment if you were logged in

Except where otherwise noted, content on this wiki is licensed under the following license: 4 C

il 7:14PM ™




Team 5 homepage: Discovar de

novo

banana-slug.soe.ucsc.edu

‘ )ﬁ Banana Slug Genomics

-team_5_page

Table of Contents
Team 5: Discovar de novo

Team composition

Edit

Name Email

Robert Calef rcalef@ucsc.edu
Chris Eisenhart ceisenha@ucsc.edu
Natasha Dudek natasha@dudek.org
Gepoliano Chaves gchaves@ucsc.edu

Edit

Discovar de novo overview

Discovar de novo is a next generation sequence assembly program. The program was developed by the Broad Institute and was released late
in 2014. Discovar de novo is designed for 250 bp long illumina reads with the PCR duplicates and adaptor sequences removed. The following

webpage contains the manual as provided by the Broad Institute (4 http://www.broadinstitute.org/software/discovar/blog/)

Discovar de novo manual

Team workflow

Quality control — FASTQc and Preqc

Adaptor removal — Skewer




Team composition

Team composition

Name

Robert Calef
Chris Eisenhart
Natasha Dudek

Gepoliano Chaves

Email
rcalef@ucsc.edu
ceisenha@ucsc.edu
natasha@dudek.org

gchaves@ucsc.edu



Team workflow

Team workflow

Quality control — FASTQc and Preqc

Adaptor removal — Skewer

PCR duplicate removal — FastUniq

Convert fastq files to BAM files — picard-fastqToSam

Discovar de novo on data subsets — Discovar de novo (with freq option)

Visualization of the output — ?

Edit



Discovar de novo run logs

Edit
Discovar run logs

Discovar was designed for very specific data. To test the validity of our data we performed three different test runs. The test runs used a
percentage of data from the three libraries. All the tests were run on .bam files on edser2. The run logs are stored as .txt files. The full logs can be
seen on the wiki here,

Run size = Data used

1% data MiSeq data SW019_S1_L001, HiSeq data SW018_S1_L007, HiSeq data SW018_S2_L008
5% data = MiSeq data SW019_S1_L001, HiSeq data SW018_S1_L007, HiSeq data SW019_S2_L008
10% data MiSeq data SWO019_S1_L001, HiSeq data SW018_S1_L007, HiSeq data SW019_S2_L008

The logs are very large, important statistics have been gathered and are compared below.

1% run 5% run 10 % run
Total runtime 1.75hours  1.53 hours 2.4 hours
Peak memory use 43.92 GB 78.10 GB 151.05 GB
Bases in 1kb+ scaffolds 75,233 592,685 1,476,875
Bases in 10kb+ scaffolds 10,572 11,088 168,543

Edit



Discovar de novo run logs

- Total runtime is relatively consistent

- ReadQGrapher step scales with the data size

- RAM intensive steps

- Reading in the files
- ReadQGrapher (peak memory step)

- Ten fold increase in bases in 10kb+ scaffolds
between 5% and 10% runs



Machine load

- Discovar denovo reads all the data into RAM
- roughly 2 bits of RAM per base

- CPU and RAM expensive for specific steps

- Analyzing logs to narrow down which steps are expensive
- ReadQGrapher



Program log

Programs used

The program, its location, and a brief, (brief!) explanation of what the program does

Picard

The Picard is a set of Java-based command-line utilities for SAM and BAM file manipulation (edser2:/soe/calef/picardtools and
edser2:/soe/calef/picard_jars). Webpage: 4 http://picard.sourceforge.net/.

Jemalloc

Is a general purpose malloc(3) implementation that emphasizes fragmentation avoidance and scalable concurrency support
(edser2:/soe/calef/jemalloc). Webpage: 4 http://www.canonware.com/jemalloc/.

Skewer

Skewer is an adapter trimmer for lllumina paired-end sequences
(/campusdata/BME235/S15_assemblies/SOAPdenovo2/adapterRemovalTask/skewer_run). Webpage: % http://sourceforge.net/projects/skewer/.

FastUniq

FastUniq is a fast de novo duplicate removal tool for paired short DNA sequences (/campusdata/BME235/bin). Webpage:
4 http://sourceforge.net/projects/fastuniq/.

GCC

GCC is a compiler for the GNU operating system. Webpage: 4 https://gcc.gnu.org/.
Edit



-Pair correction and filling

-Sequence preparation
- FastUniq

- FastqToSam
-User experience

-Documentation and results



Acknowledgements

-Ed Green, sequencing and lectures

-Kevin Karplus, wiki, lectures, and past classes
-Stefan Prost, guest lecturer

-Steven Weber, Jared Copher, lab work

-John Pearse and Jan Leonard, slug biology
-Kickstarter donors, making it possible



Discovar’s origin and genetic

variation

e At time previous to Discovar's paper (Weisenfeld et
al., 2014), the methods available to investigate GV
did a good job in 90% of the cases.

e C(Calling variants was a challenging in the 10%
remaining of the genome, specially those occuring

In low-complexity sequence, segmental duplications
and high GC content regions.



Discovar’s origin and genetic

variation

e Discovar was specifically designed to address
challenging variant types;

e Discovar involves initial alignment of reads to
genomic regions followed by careful

e Compared with Genome Analysis Tool Kit (GATK),
Discovar provides a better coverage of challenging
variants and excelent coverage of ordinary variants



Discovar vs. Discovar de novo

e Discovar is a variant caller and small
genome assembler

e Discovar de novo however, can assemble
genomes up to the mamallian size



