
Assembly of Ariolimax dolichophallus
using SOAPdenovo2

Charles Markello, Thomas Matthew, and Nedda Saremi

Image taken from Banana Slug Genome Project, S.
Weber

SOAPdenovo Assembly Tool

● Short Oligonucleotide Analysis Package (SOAP) de novo
● de Bruijn based graph (DBG) assembler
● Collection of alignment and assembly programs

developed at Beijing Genomics Institute (BGI)
● Has been applied to a number of genome sequencing

projects including the Giant Panda

A) Library construction

B) Reads used to make de Bruijn graph

C) Removal of erroneous connections and
tiny repeats

D) Break connections at repeat boundaries
to output unambiguous sequence fragments
as contigs

E) Use paired-end information to join
unique contigs into scaffolds

F) Fill in intra-scaffolded gaps using paired-
end extracted reads

SOAPdenovo Data Flow

Image taken from Luo, R., et al

SOAP2.04 Updates

● Reduces memory consumption in de Bruijn graph construction
● Resolves more repeat regions in contig assembly
● Increases coverage and length in scaffold construction
● Improves gap closing
● Optimized for larger genomes and longer read datasets

Image taken from Luo, R. et al

Arabidopsis thaliana sequencing project

SOAPdenovo employs multiple k-mers
● Similar to other DBG-based assemblers requiring k-mer

selection, but can implement multiple k-mer strategy
● Selection is dependent on repetitiveness of genome,

sequencing error, and heterozygosity

○ Smaller k-mer:
■ Minimizes sequencing errors and resolves heterozygotic regions

○ Larger k-mer:
■ Resolves short repeats

Multiple k-mers strategy combines range of k-mer
lengths, resulting in longer contigs

de Bruijn Graph Assemblers
● de Bruijn graph assembly using k-mer specified
● Would in practice, give up on unresolvable repeats and

yield fragmented assemblies
● Remove erroneous connections and solve short repeats
● Advantage is that:

○ O(N) work to build a de Bruijn graph, where N is the total
length of all reads

○ Use sparse de Bruijn graph (DBG) to store only one
out of every g (g<k) k-mers while trying to sub-sample
evenly across the original DBG

SOAPdenovo2 Scaffolding

● Contigs will break at the repetitive sequences that can’t be
resolved with the chosen k-mer length

● 2 ideas were implemented to facilitate scaffolding:
1) Build scaffolds heirarchically traversing from short insert

size (200bp) to large insert sizes (10kbp)
2) Repetitious contigs and contigs shorter than a threshold

are masked before scaffolding to simplify contig graph
● Problem: heterozygous contigs influenced scaffold length
● Solution: use contig depth with location to keep only the

heterozygous contig with the greatest depth

SOAPdenovo2 GapCloser
● In the scaffolds, regions between contigs are called gaps

and represented by Ns
○ Most of gaps are repetitive patterns that were

masked during scaffolding
● 2 step module in SOAPdenovo called GapCloser which

fills gaps in the assembled scaffolds
○ Import and pre-process reads and scaffolds
○ Contigs are being extended to fill gaps iteratively

SOAPdenovo2 User Experience
● Configuration file needed to supply parameters to SOAP

○ Average insert size.
○ Paired end sequence orientation (forward-reverse or reverse-

forward).
○ Assembly flags, indicates which parts of reads are used.

■ Contig assembly and/or Scaffold assembly.
■ Gap closure.

○ Read length cutoff.
○ Rank to determine order of read libraries to use for scaffold

construction.
■ Ranking shorter insert length read data first is recommended.

○ Min # paired-end reads to connect 2 contigs or scaffolds.
○ Min alignment length between a read and contig for reliable read

location.

Sample config file

Cons of SOAPdenovo2

● Sensitive to sequencing errors
○ Must exclude data from poor libraries, filter low-quality reads and

use high quality/coverage reads for de novo assembly
● Multiple-copy genes or genes containing repetitive

sequences may be fragmented in assembly
● Large computational memory requirement for DBG
● DBG construction is order-dependent

○ Different input reads ordering results in different graph structure
● Must specify estimated genome size

○ Variation in estimate alters starting point of graph traversals
■ Some nodes visited more than once, increasing computation time

● Recommend using full DBG on small or repetitive genomes

Current SOAPdenovo Pipeline

FastQC Results

● Per base sequence content skewed to Ts (all)
● Overrepresented sequences (possibly an adapter)

(HiSeq SW018)

● Abnormal k-mers at start of reads (all)
● Base quality decreases at ends of reads (MiSeq)

preqc Results
Low error rateGenome size estimate 2.29Gb

High repeat content k estimate

Skewer preferred over Adapter Trimmer

● Process of removing adapters used in sequencing

● AdapterRemoval
○ Incredibly slow

■ Single threaded ☹
■ Took about 12 hours to process ~4.5gb of read data from a single set

of paired-end data.

● Skewer
○ Multithreaded ☺
○ User experience:

■ Easier to install and use
■ Much faster, takes about 3 hours using 32 threads.

Error Correction with SOAPec
● Most low-frequency k-mers are generated by

sequencing errors
● SOAPec corrects them based on k-mer frequency

spectrums (KFS)
● In low frequency k-mers, determines which one base

correction can transform false k-mers to authentic

SOAPec User Experience

● Ran with adapter trimmed FASTQ files
● Each library run separately
● k-mer =20mer

● Small k-mers increased in count, attempted to use
other EC tools

Error Correction with Quake
● Uses k-mer coverage and quality values to differentiate

between trusted and untrusted k-mers
○ Untrusted k-mers have lower quality base calls

● Assigns cut-off to differentiate between trusted and
untrusted k-mers based on distributions

● Reads containing untrusted k-mer are candidates for
correction

● Find maximum
 likelihood set of
 corrections that makes
 all k-mers overlapping
 the region trusted

Quake User Experience

● Running each adapter trimmed library separately
● k-mer = 20
● Trial history:
○ Failed due to missing R package ‘VGAM’
○ Installed VGAM
○ Re-ran
○ Second run failed, no data output

Musket

● 2 stages:
○ K-mer spectrum construction
○ Error correction

● K-mer spectrum construction:
○ Counts # of non-unique k-mers using Bloom filter and

hash table.
● Estimates coverage cut-off from the lowest density of the

left valley.
○ Classifies trusted and untrusted kmers

● Error Correction in 3 techniques
○ two-sided conservative correction
○ one-sided aggressive correction
○ voting-based refinement

Musket

Musket User Experience
● Easy to setup and install

○ Only required setting max sequence/read length
● Chose to run algorithm with default 21-mer analysis
● Ran once to get accurate 21-mer total count.

○ Useful for setting specific parameter for balancing memory
consumption between Bloom filters and hash tables.

● Ran again to get 21-mer multiplicity-by-frequency
histogram for estimating max multiplicity cutoff filter
post error correction.

● Takes about 8 hours running on 30 threads on 3 pairs of
Illumina read data.

21-mer multiplicity histogram

21-mer multiplicity histogram zoom

KmerGenie Analysis
● In de Bruijn-based assemblers, the most significant

parameter is k
○ Choice of k is a trade-off between several effects

■ If selecting a short k, repeats longer than k can tangle the
graph and break-up contigs

■ However, the longer k is, the higher the chance the k-mer will
have an error in it

● KmerGenie constructs approximate abundance
histograms to determine optimal k

● Best choice of k is one that provides the most distinct
non-erroneous k-mers

● Pooled all libraries of adapter trimmed and error
corrected reads from skewer and musket, respectively

● Created histograms for k-mers in range 21 to 121 by 10
● Best k-mer = 61

KmerGenie Results

Post Adapter Removal Post Error Correction Removal

peak: 1,903,304,894peak: 1,895,923,629

Next Steps

● 61mer -- SOAPdenovo2
● optional multi-kmer selection:

○ range 51, 63 -- increased contig N50 (compute
resources permitting)

● REAPR -- Evaluate assembly accuracy
● CEGMA -- Search for genes found in all eukaryotes
● Meta-assembly
● Re-map all read data to merged assembly

References
● Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., … Wang, J. (2010). De novo

assembly of human genomes with massively parallel short read sequencing.
Genome Research, 20(2), 265–272. http://doi.org/10.1101/gr.097261.109

● Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., … Wang, J. (2012). SOAPdenovo2:
an empirically improved memory-efficient short-read de novo assembler.
GigaScience, 1(1), 18. http://doi.org/10.1186/2047-217X-1-18

● Chikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection
for genome assembly. Bioinformatics, 30(1), 31–37. http://doi.org/10.
1093/bioinformatics/btt310

● Yang, X., Chockalingam, S. P., & Aluru, S. (2012). A survey of error-correction
methods for next-generation sequencing. Briefings in Bioinformatics, bbs015.
http://doi.org/10.1093/bib/bbs015

● Lee, H. C., Lai, K., Lorenc, M. T., Imelfort, M., Duran, C., & Edwards, D. (2011).
Bioinformatics tools and databases for analysis of next-generation sequence
data. Briefings in Functional Genomics, elr037. http://doi.org/10.
1093/bfgp/elr037

http://doi.org/10.1101/gr.097261.109
http://doi.org/10.1186/2047-217X-1-18
http://doi.org/10.1093/bioinformatics/btt310
http://doi.org/10.1093/bioinformatics/btt310
http://doi.org/10.1093/bioinformatics/btt310

Supplement Section
�

SOAPdenovo uses de Bruijn Alignment
● SOAPdenovo based on the de Bruijn graph structure

○ Nodes to represent all possible k-mers
○ Edges to represent perfect overlap of heads and tails of

length k-1

Image taken from http://www.homolog.us/Tutorials/index.php?p=2.
1&s=1

SOAPdenovo2 Updates
● Use sparse de Bruijn graph (DBG) to store only one out

of every g (g<k) k-mers while trying to sub-sample
evenly across the original DBG
○ DBG reduced in size by factor of g

■ Reduced memory consumption 2-5 times in DBG construction step

● Allows for parallelization
○ Contig construction is dependent on number of threads

specified
● Recognizes heterozygous contig pairs that resulted in

two separate contigs in original SOAPdenovo
● Chimeric scaffolds incorrectly built are examined and

fixed before extension with libraries of larger insert sizes

SOAPdenovo k-mer selection

Possible Run options
1) 63-mer
2) 127-mer
3) range(63, 127) -m 127 -K 63
4) range(13, 63) -m 63 -K 13

Output files
● *.contig

○ contig sequences without using mate pair
information

● *.scafSeq
○ scaffold sequences

Compute time and Memory Requirements

● Contig N50 improves linearly from 10X to 30X
coverage

● 150GB memory required for human genome assembly
●
●
●
●

SOAPdenovo Conditions

Possible Run options
1) 63-mer
2) 127-mer
3) range(63, 127) -m 127 -K 63
4) range(13, 63) -m 63 -K 13

Error Correction
� 3 types:

1. K-spectrum based
2. suffix tree/array based
3. MSA-based

K-spectrum Error Correction
● A k-mer occurring at least M times is termed solid, and

is termed insolid otherwise
● Reads containing insolid k-mers are converted to solid

ones with a minimum number of edit operations so that
they contain only solid k-mers post-correction
○ Similar idea is used in SOAPec

SOAPec KFS Technique
● Define two kinds of k-mers

1. consecutive k-mer [i to i+k] k bp in length
2. space k-mer with gap s [i to i+s+k] k bp with gap s

● 1st approach (k<17) uses index table using 4^n bytes
● 2nd approach (k>17) stores k-mers and frequencies in

hash table using G*2k

SOAPec ec Technique
● Import k-mer frequency tables into memory
● Divide k-mers into low and high frequency
● Reads with low frequency are considered possible

errors and passed to next correction stage
● Aim of error correction is to convert min false k-mers to

authentic k-mers with one correction
●

EC with Quake in-depth
● Increment k-mer’s coverage by the product of the

probabilities that the base calls in the k-mer are correct
as defined by the quality values (q-mer counting)
○ better differentiates between true k-mers sequenced

to low coverage and error k-mers that occurred
multiple times due to bias or repetitive sequence

● Histogram of two distributions, true and error k-mers
○ must choose cut-off to differentiate between
■ trusted k-mers as a mixture of Gaussian and Zeta distributions

■ untrusted k-mers as Gamma distribution

○ Convert each read to be free of untrusted k-mers
■ Heuristically locate erroneous region in r ising insolid k-mers, if

cover 3’ end trimming is applied
■ Greedily correct bases with low quality scores until all k-mers are

solid

slide assignments

Charlie: 15, 21-25, 28
Nedda: 13,14,16-20, 26-27
Thomas: 1-12

