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SOAPdenovo Assembly Tool

● Short Oligonucleotide Analysis Package (SOAP) de novo
● de Bruijn based graph (DBG) assembler
● Collection of alignment and assembly programs 

developed at Beijing Genomics Institute (BGI)
● Has been applied to a number of genome sequencing 

projects including the Giant Panda



A) Library construction

B) Reads used to make de Bruijn graph 

C) Removal of erroneous connections and 
tiny repeats

D) Break connections at repeat boundaries 
to output unambiguous sequence fragments 
as contigs

E) Use paired-end information to join 
unique contigs into scaffolds

F) Fill in intra-scaffolded gaps using paired-
end extracted reads

SOAPdenovo Data Flow

Image taken from Luo, R., et al



SOAP2.04 Updates

● Reduces memory consumption in de Bruijn graph construction
● Resolves more repeat regions in contig assembly
● Increases coverage and length in scaffold construction
● Improves gap closing
● Optimized for larger genomes and longer read datasets

Image taken from Luo, R. et al

Arabidopsis thaliana sequencing project



SOAPdenovo employs multiple k-mers
● Similar to other DBG-based assemblers requiring k-mer 

selection, but can implement multiple k-mer strategy
● Selection is dependent on repetitiveness of genome, 

sequencing error, and heterozygosity

○ Smaller k-mer:
■ Minimizes sequencing errors and resolves heterozygotic regions

○ Larger k-mer:
■ Resolves short repeats

Multiple k-mers strategy combines range of k-mer 
lengths, resulting in longer contigs



de Bruijn Graph Assemblers
● de Bruijn graph assembly using k-mer specified
● Would in practice, give up on unresolvable repeats and 

yield fragmented assemblies
● Remove erroneous connections and solve short repeats
● Advantage is that:

○ O(N) work to build a de Bruijn graph, where N is the total 
length of all reads

○ Use sparse de Bruijn graph (DBG) to store only one 
out of every g (g<k) k-mers while trying to sub-sample 
evenly across the original DBG 



SOAPdenovo2 Scaffolding

● Contigs will break at the repetitive sequences that can’t be 
resolved with the chosen k-mer length

● 2 ideas were implemented to facilitate scaffolding:
1) Build scaffolds heirarchically traversing from short insert 

size (200bp) to large insert sizes (10kbp)
2) Repetitious contigs  and contigs shorter than a threshold 

are masked before scaffolding to simplify contig graph
● Problem: heterozygous contigs influenced scaffold length
● Solution: use contig depth with location to keep only the 

heterozygous contig with the greatest depth



SOAPdenovo2 GapCloser
● In the scaffolds, regions between contigs are called gaps 

and represented by Ns
○ Most of gaps are repetitive patterns that were 

masked during scaffolding
● 2 step module in SOAPdenovo called GapCloser which 

fills gaps in the assembled scaffolds
○ Import and pre-process reads and scaffolds
○ Contigs are being extended to fill gaps iteratively



SOAPdenovo2 User Experience
● Configuration file needed to supply parameters to SOAP

○ Average insert size.
○ Paired end sequence orientation (forward-reverse or reverse-

forward).
○ Assembly flags, indicates which parts of reads are used.

■ Contig assembly and/or Scaffold assembly.
■ Gap closure.

○ Read length cutoff.
○ Rank to determine order of read libraries to use for scaffold 

construction.
■ Ranking shorter insert length read data first is recommended.

○ Min # paired-end reads to connect 2 contigs or scaffolds.
○ Min alignment length between a read and contig for reliable read 

location.



Sample config file



Cons of SOAPdenovo2

● Sensitive to sequencing errors
○ Must exclude data from poor libraries, filter low-quality reads and 

use high quality/coverage reads for de novo assembly
● Multiple-copy genes or genes containing repetitive 

sequences may be fragmented in assembly
● Large computational memory requirement for DBG 
● DBG construction is order-dependent

○ Different input reads ordering results in different graph structure
● Must specify estimated genome size

○ Variation in estimate alters starting point of graph traversals
■ Some nodes visited more than once, increasing computation time

● Recommend using full DBG on small or repetitive genomes



Current SOAPdenovo Pipeline



FastQC Results

● Per base sequence content skewed to Ts (all)
● Overrepresented sequences (possibly an adapter) 

(HiSeq SW018)

● Abnormal k-mers at start of reads (all)
● Base quality decreases at ends of reads (MiSeq)



preqc Results
Low error rateGenome size estimate 2.29Gb

High repeat content k estimate



Skewer preferred over Adapter Trimmer

● Process of removing adapters used in sequencing

● AdapterRemoval
○ Incredibly slow

■ Single threaded ☹
■ Took about 12 hours to process ~4.5gb of read data from a single set 

of paired-end data.

● Skewer
○ Multithreaded ☺
○ User experience:

■ Easier to install and use
■ Much faster, takes about 3 hours using 32 threads.



Error Correction with SOAPec
● Most low-frequency k-mers are generated by 

sequencing errors
● SOAPec corrects them based on k-mer frequency 

spectrums (KFS)
● In low frequency k-mers, determines which one base 

correction can transform false k-mers to authentic



SOAPec User Experience

● Ran with adapter trimmed FASTQ files
● Each library run separately 
● k-mer =20mer

● Small k-mers increased in count, attempted to use 
other EC tools



Error Correction with Quake
● Uses k-mer coverage and quality values to differentiate 

between trusted and untrusted k-mers
○ Untrusted k-mers have lower quality base calls

● Assigns cut-off to differentiate between trusted and 
untrusted k-mers based on distributions

● Reads containing untrusted k-mer are candidates for 
correction

● Find maximum 
    likelihood set of 
    corrections that makes 
    all k-mers overlapping 
    the region trusted



Quake User Experience 

● Running each adapter trimmed library separately
● k-mer = 20
● Trial history:
○ Failed due to missing R package ‘VGAM’
○ Installed VGAM
○ Re-ran
○ Second run failed, no data output



Musket

● 2 stages:
○ K-mer spectrum construction
○ Error correction

● K-mer spectrum construction:
○ Counts # of non-unique k-mers using Bloom filter and 

hash table.
● Estimates coverage cut-off from the lowest density of the 

left valley.
○ Classifies trusted and untrusted kmers

● Error Correction in 3 techniques
○ two-sided conservative correction
○ one-sided aggressive correction
○ voting-based refinement



Musket



Musket User Experience
● Easy to setup and install

○ Only required setting max sequence/read length
● Chose to run algorithm with default 21-mer analysis
● Ran once to get accurate 21-mer total count.

○ Useful for setting specific parameter for balancing memory 
consumption between Bloom filters and hash tables.

● Ran again to get 21-mer multiplicity-by-frequency 
histogram for estimating max multiplicity cutoff filter 
post error correction.

● Takes about 8 hours running on 30 threads on 3 pairs of 
Illumina read data.



21-mer multiplicity histogram



21-mer multiplicity histogram zoom



KmerGenie Analysis
● In de Bruijn-based assemblers, the most significant 

parameter is k
○ Choice of k is a trade-off between several effects

■ If selecting a short k, repeats longer than k can tangle the 
graph and break-up contigs

■ However, the longer k is, the higher the chance the k-mer will 
have an error in it

● KmerGenie constructs approximate abundance 
histograms to determine optimal k

● Best choice of k is one that provides the most distinct 
non-erroneous k-mers 



● Pooled all libraries of adapter trimmed and error 
corrected reads from skewer and musket, respectively

● Created histograms for k-mers in range 21 to 121 by 10 
● Best k-mer = 61

KmerGenie Results

Post Adapter Removal Post Error Correction Removal

peak: 1,903,304,894peak: 1,895,923,629



Next Steps 

● 61mer -- SOAPdenovo2
● optional multi-kmer selection:

○ range 51, 63 -- increased contig N50 (compute 
resources permitting)

● REAPR -- Evaluate assembly accuracy
● CEGMA -- Search for genes found in all eukaryotes
● Meta-assembly
● Re-map all read data to merged assembly
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Supplement Section
�



SOAPdenovo uses de Bruijn Alignment
● SOAPdenovo based on the de Bruijn graph structure

○ Nodes to represent all possible k-mers
○ Edges to represent perfect overlap of heads and tails of 

length k-1

Image taken from http://www.homolog.us/Tutorials/index.php?p=2.
1&s=1



SOAPdenovo2 Updates
● Use sparse de Bruijn graph (DBG) to store only one out 

of every g (g<k) k-mers while trying to sub-sample 
evenly across the original DBG 
○ DBG reduced in size by factor of g

■ Reduced memory consumption 2-5 times in DBG construction step

● Allows for parallelization
○ Contig construction is dependent on number of threads 

specified
● Recognizes heterozygous contig pairs that resulted in 

two separate contigs in original SOAPdenovo
● Chimeric scaffolds incorrectly built are examined and 

fixed before extension with libraries of larger insert sizes



SOAPdenovo k-mer selection

Possible Run options
1) 63-mer
2) 127-mer
3) range(63, 127)  -m 127 -K 63
4) range(13, 63) -m 63 -K 13



Output files
● *.contig

○ contig sequences without using mate pair 
information

● *.scafSeq
○ scaffold sequences 



Compute time and Memory Requirements

● Contig N50 improves linearly from 10X to 30X 
coverage

● 150GB memory required for human genome assembly
●
●
●
●



SOAPdenovo Conditions

Possible Run options
1) 63-mer
2) 127-mer
3) range(63, 127)  -m 127 -K 63
4) range(13, 63) -m 63 -K 13



Error Correction
� 3 types:

1. K-spectrum based
2. suffix tree/array based
3. MSA-based



K-spectrum Error Correction
● A k-mer occurring at least M times is termed solid, and 

is termed insolid otherwise
● Reads containing insolid k-mers are converted to solid 

ones with a minimum number of edit operations so that 
they contain only solid k-mers post-correction
○ Similar idea is used in SOAPec 



SOAPec KFS Technique
● Define two kinds of k-mers

1. consecutive k-mer [i to i+k] k bp in length
2. space k-mer with gap s  [i to i+s+k] k bp with gap s

● 1st approach (k<17) uses index table using 4^n bytes
● 2nd approach (k>17) stores k-mers and frequencies in 

hash table using G*2k



SOAPec ec Technique
● Import k-mer frequency tables into memory
● Divide k-mers into low and high frequency
● Reads with low frequency are considered possible 

errors and passed to next correction stage
● Aim of error correction is to convert min false k-mers to 

authentic k-mers with one correction 
●



EC with Quake in-depth
● Increment k-mer’s coverage by the product of the 

probabilities that the base calls  in the k-mer are correct 
as defined by the quality values (q-mer counting)
○ better differentiates between true k-mers sequenced 

to low coverage and error k-mers that occurred 
multiple times due to bias or repetitive sequence

● Histogram of two distributions, true and error k-mers
○ must choose cut-off to differentiate between
■ trusted k-mers as a mixture of Gaussian and Zeta distributions 

■ untrusted k-mers as Gamma distribution

○ Convert each read to be free of untrusted k-mers
■ Heuristically locate erroneous region in r ising insolid k-mers, if 

cover 3’ end trimming is applied
■ Greedily correct bases with low quality scores until all k-mers are 

solid



slide assignments

Charlie: 15, 21-25, 28
Nedda: 13,14,16-20, 26-27
Thomas: 1-12


