
SGA
Stringing the genome together

BME 235, April 23
Josh Espinoza, Chris Kan, Audrey Musselman-Brown

1

SGA - Overview

- Memory Efficient
- CPU Intensive for initial steps
- Modular approach

- Pipeline benefits
- Computational benefits

- Emphasis on Substring Accuracy

2

How does SGA Compare?

3

How does SGA Compare?

4

How long might this take?

5

How long might this take?

6

Correction and Indexing take up 63% of CPU time.

Accuracy - Substring Coverage

7

Accuracy - Reference Coverage

8

The SGA Pipeline

Scaffold Libraries
Together and Gap Fill
Scaffolds

The SGA Pipeline

10

sga scaffold2fasta

SSPACE

sga rmdup
sga fm-merge
sga overlap

sga merge

sga preprocess

Installation Steps
i) Install Google-sparsehash

$ wget http://sparsehash.googlecode.com/files/sparsehash-2.0.2.tar.
gz

$ gtar xvzf sparsehash-1.8.1.tar.gz

$ cd sparsehash-1.8.1

$./configure --prefix=`pwd`

$ make

$ make install

ii) Install bamtools

$ git clone git://github.com/pezmaster31/bamtools.git

$ cd bamtools

$ mkdir build

$ cd build

$ cmake ..

$ make
11

iii) Install sga

$ git clone https://github.com/jts/sga.git

$ cd sga/src

$./autogen.sh

$./configure --prefix=/path/to/sga_dir/ --with-
sparsehash=/path/to/sparsharsh_dir/ --with-
bamtools=/path/to/bamtools_dir/

$ make

$ make install

SPECIAL THANKS TO ROBERT
CALEF FOR THE CS WISDOM

https://github.com/jts/sga.git

Requirements

12

Depth of coverage
Minimum = 20 - 30X coverage
Recommended = 40X coverage

Read lengths
Designed for 100 nt reads or greater

Overlap
Too short : Edges will be created in graph between reads

that have short repeats at their ends
Too long : No overlap
Recommended : For 100 nt reads : 65 nt for FM-merge,

and 75 for SGA assemble

Parameter Tuning

13

● the overlap size (-m to sga overlap/sga assemble)

● the k-mer size used in error correction

● the k-mer threshold in error correction (sga correct -x)

https://github.com/jts/sga/wiki/Parameter-tuning

Burrows Wheeler Transformation [BWT]

14

● Reversible compression technique
● Rearranges string into runs of similar chars
● Linear time with respect to the len(p) : O(|P|) time,

independent of the len(S) (where P is pattern and S is string)
Algorithm Basics

1. Create suffix array
2. Sort all rotations into lexicographic order
3. Store first | last columns (F and L, respectively)

BWT | Algorithm eg.

15

$ B A N A N A
A $ B A N A N
N A $ B A N A
A N A $ B A N
N A N A $ B A
A N A N A $ B
B A N A N A $

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A

BANANA
 +
 $

Query string:

Step 1 Step 2

BWT | Algorithm eg. cont.

16

$ B A N A N A
A $ B A N A N
A N A $ B A N
A N A N A $ B
B A N A N A $
N A $ B A N A
N A N A $ B A
F L

i) Store last column of sorted substrings
ii) Find substring with last char == $ (s0)
iii) Since last substring’s 1st char == 1st B; go to string in last
col with 1st B (s1) : out += B
iv) s1[0] = 3rd A; find substring
whose last char == 3rd A (s2) : out += A
v) s2[0] = 2nd N == s3[-1] : out += N
vi) s3[0] = 2nd A == s4[-1] : out += A
vii) s4[0] == 1st N == s5[-1] : out += N
viii) s5[0] = 1st A == s6[-1] : out += A
ix) s6[0] = $ == s7[-1] : out += $

B A N A N A $

Step 3

FM-Index
● Full-text index in Minute space.

● Compressed full-text substring index based on the Burrows-
Wheeler transform and Suffix Array

● Scales with the size of the input alphabet ∆

● Locating each pattern occurrence takes O(log |∆| (log2 n/ log log
n)) time. http://people.unipmn.it/manzini/papers/spire04.pdf

17

http://en.wikipedia.org/wiki/Substring_index
http://en.wikipedia.org/wiki/Burrows-Wheeler_transform
http://en.wikipedia.org/wiki/Burrows-Wheeler_transform
http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

FM Index | Algorithm eg.

18

Query string = ‘abaaba ‘ : How to find occurrences of substring ‘aba’ in string?

Step 1) Create sorted suffix array
Step 2) Store F and L columns (BWT)
Step 3) Store some offsets of suffix array [SA] based on sample-rate

FM Index | Algorithm eg.

19

Query string = ‘abaaba ‘ : How to find occurrences of substring ‘aba’ in string?

Step 4) Determine range of BWT rows that have substring prefix

Step 5) Lookup for row 4, entry of SA present

Step 6) Lookup for row 3, entry of SA discarded

Rows
0
1
2
3
4
5
6

FM-Index | Algorithm eg.

20

Query string = ‘abaaba ‘ : How to find occurrences of substring ‘aba’ in string?

Step 6a) LF map tells us that a at the beginning of
R2 is the same a at the end of R3

Step 6b) Row 2 has SA = 2

Step 6c) 2(R2’s SA) + 1(# step from R2 >> R3)
 (2) + (1) = 3
 R3 has SA = 3

Row
0
1
2
3
4
5
6

FM-Index | Parameters

21

Components of the FM Index:
First column [F] : ~|∆| integers (First column of BWT)
Last column [L] : m characters (Last column of BWT)

SA Sample : m * a integers, where a is fraction of rows kept

Checkpoints: m * |∆| * b integers, where b is sample-rate

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf

FM-Index | eg.

22

i) DNA = {A,T,C,G} 2 bit/nt; ii) T = human genome; iii) a = 1/32; iv) b = 1/128

First Column [F] : 16 bytes
Last Column [L] : 2 bits * 3.0E9 chars = 750 MB
SA Sample : 3.0E9 chars * (4 bytes/char)/32 = ~ 400 MB
Checkpoints : 3.0E9 * (4 bytes/char) * (1/128) = ~ 100 MB

Total < 1.5 GB

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/bwt_and_fm_index.pdf

FM-Index | Algorithm eg. cont.

23

● At the expense of adding some SA values
(O(m) integers) to index, can be done using
much less memory

● Small memory footprint!

Assembly Algorithm

- FM Index
- Merge paths to reduce graph size
- Reindex
- Build string graph

24

Read Merging

- Query FM index
- Follow unambiguous paths (unipaths)
- Merge them into a single read
- build FM index for new reads
- Remove graph tips (hairiness)

25

String Graph

26

- Modified overlap graph
- Remove all duplicate or

contained reads
- Index with l-mers
- only reads sharing an l-

mer are checked for an
overlap

String Graph

27

- Label edges with non-
matching sequence

- Remove transitive
edges

-

Bubble Popping

- Similar to deBruijn graph assemblers
- Find pairs of nodes with multiple walks

between them
- Choose a walk to stay in the graph
- If other walks are similar enough (default

95%), they are removed and set aside for
heterozygosity analysis

28

Scaffolding - Building the Scaffold

- Create potential order of contigs
- Determine unique or repetitive (A-Statistic)
- Remove repetitive or contigs of uncertain

order

29

Scaffolding - Filling Scaffold Gaps

- Standalone
- Using kmer search on gap regions to find

paths

30

Fast QC/ Pre QC

31

The Road Forward

- Adjust Error Correction and Assembly
- Trying to assemble/ fine tune one library
- Final assembly of all libraries and merging

32

Scaffold Libraries
Together and Gap Fill
Scaffolds

The Road Forward

33

sga scaffold2fasta

SSPACE

sga merge

sga preprocess

sga rmdup
sga fm-merge
sga overlap

References
1. Simpson and Durbin, “Efficient de Novo Assembly of Large Genomes Using Compressed Data

Structures.”
2. Jared Thomas Simpson, “Efficient Sequence Assembly and Variant Calling Using Compressed Data

Structures.”

34

