Generating a Genome Assembly with
PCAP

In recent years, the whole-genome shotgun (WGS) technique has become the method
of choice for generating genome sequences. In this technique, the entire genome is
randomly sheared and cloned into a small insert library (typically plasmids or fosmids).
The plasmid inserts are then sequenced either individually or as pairs from each end of the
insert to achieve an average coverage of 5- to 10-fold across each base. These “sequence
reads,” or “reads” for short, are typically 400 to 800 base pairs long, and, depending on
the size and coverage of the WGS, there may be millions, or tens of millions, of them.
The challenge is then to assemble these reads together into large contiguous stretches of
sequence by a process of finding overlaps among them and piecing them together like
a jigsaw puzzle. The Parallel Contig Assembly Program (PCAP) is one of several such
software tools that make WGS assembly possible.

The PCAP package is a set of programs for generating a genome assembly from a
mixture of paired and unpaired sequence reads. PCAP can handle a genome of 30 Mb
on a single-processor computer, a genome of 300 Mb on a multiprocessor computer with
10 processors or more, and a genome of 3 Gb on a computer cluster of 100 or more
processors.

This unit presents instructions (see Basic Protocol 1) for using PCAP on a multiprocessor
computer in a 300-Mb genome-assembly project typical of an invertebrate or large
microbe, using an example data set. The use of other parameter values in PCAP for more
advanced performance is also described in that protocol. Using PCAP on a computer
cluster to assemble a 3-Gb genome, typical of the size of a vertebrate genome, is described
in Basic Protocol 2. Accompanying support protocols describe the downloading and
installation of PCAP (Support Protocol 1), the preparation of the input files (Support
Protocol 2), and the generation of the fofn . con file used by PCAP (Support Protocol 3).

PCAP consists of several main programs for generating an assembly. First, the pcap
program computes pairwise overlaps between reads. Next, the bdocs program uses these
overlaps to calculate the coverage depths at each region of the genome. After that, the
bclean program removes overlaps between reads with extremely high coverage depths,
which typically correspond to repetitive regions of the genome that would otherwise
confuse the assembly process. In the subsequent step, the bcontig program builds
the assembly layout, placing each read into an ungapped region of contiguous sequence
known as a “contig,” and then assembling the contigs into larger gapped structures known
as “supercontigs.” Finally, the bconsen program generates the consensus sequences of
the contigs. The consensus is a single sequence that selects the most likely base pair from
among the overlapping reads that make up a contig, thereby eliminating many sequencing
errors in the raw reads.

The PCAP package also contains a few minor programs for formatting an assembly and
collecting statistics on it. The bform program combines a number of files of consensus
sequences into a single file and compiles lists of all reads that were either used or omitted
from the assembly. The bpair program reports the status of read pairs at the contig level
and at the read level. The n50 program collects the Nsg lengths (a standard measure of
the distribution of contig length) and counts of contigs and supercontigs. The xstat
program reports the distribution of the distances of read pairs in supercontigs.

UNIT 11.3

Assembling
Sequences

Contributed by Xiaoqiu Huang and Shiaw-Pyng Yang
Current Protocols in Bioinformatics (2005) 11.3.1-11.3.23
Copyright © 2005 by John Wiley & Sons, Inc.

11.3.1

Supplement 11

BASIC
PROTOCOL 1

Generating

a Genome
Assembly with
PCAP

11.3.2

Supplement 11

In addition, PCAP contains several Perl scripts for automatically running the major
and minor programs in the proper order. The autopcap script automatically runs
the programs to produce a small-scale assembly on a shared-memory computer. The
other Perl scripts produce a large-scale assembly on a distributed cluster of computers
and a computer with large memory. The sublapjobs Perl script generates many job
shell scripts for computing overlaps with the pcap code and submits the job scripts
to the cluster for execution in parallel. The runtigcode Perl script runs the bdocs,
bclean, and bcontig programs in the proper order on the large-memory computer.
The subsenijobs Perl script generates many job shell scripts for computing consensus
sequences with the bconsen code and submits the job scripts to the cluster for execution
in parallel. The runstatcode Perl script runs the minor programs in the proper order
on the large-memory computer.

PRODUCING AN ASSEMBLY WITH PCAP USING AN EXAMPLE DATA SET

The autopcap Perl script is used to generate automatically an assembly on a small or
medium data set on a shared-memory computer with multiple processors. The assembly
is distributed in a number of output files. The formats and contents of the output files are
specified.

Necessary Resources

Hardware

Unix or Linux computer with 3 Gb of memory and 15 Gb of free hard disk space.
PCAP requires 3 Gb of memory and 15 Gb of hard disk space for projects in the
100 to 300 Mb range. Larger genome projects will require more memory and
disk space. A rule of thumb for estimating the memory and disk space
requirements of PCAP is to let N be the total number of raw bases in Mb for a
project, whereby the memory and disk space requirements of PCAP for the
project are about 15N and 75N Mb, respectively. For projects that exceed the
3-Gb memory limit, one will have to use 64-bit hardware, such as that provided
by the AMDG64, Itanium, or Sun platforms.

Software

PCAP (http://seq.cs.iastate.edu). For instructions on downloading and installing
PCAP, see Support Protocol 1. PCAP is free to academic users, but a licensing
agreement is required for commercial users. If PCAP requires more than 3 Gb of
memory, then the 64-bit version of PCAP should be obtained.

Files

PCAP takes as input a number of pairs of gzip-compressed base and quality files
in FASTA format, a file of read pairs, and a file of all base file names without the
gz suffix. The files for the example used in this unit are included in the PCAP
package. See Support Protocols 2 and 3 for generation of input files.

Producing an assembly on an example data set

1. Run PCAP with the default parameter values. From the Unix command line, enter
the PCAP distribution directory. Execute the following commands:

cd example
../autopcap fofn > auto.log &

The example directory contains a small data set. The PCAP code is in the parent direc-
tory of example. The file fofn contains the base file names (without the gz suffix that
indicates compression) of all the reads that are to be assembled, and the file fofn.con

Current Protocols in Bioinformatics

lists the read pairs among this set. Make sure that the directory contains only files for the
data set before running PCAP. The autopcap job should take a minute or two on the
small data set. When it is done, the last line in the file auto . log should read:

The autopcap job is completed.

If the job runs successfully, it will leave the assembly results and statistics in the following

files:

contigs.bases: Contig base sequences in FASTA format.
contigs.quals: Contig quality scores in FASTA format.
supercontigs: Overview of supercontigs.
reads.placed: The positions of reads in the assembly.
reads.unplaced: The names of reads that are not in the assembly.
fofn.pcap.scaffold*.ace: Ace files of contigs for the Consed assembly
viewer and editor program.
readpairs.contigs: Major unused read pairs between contigs.
readpairs.reads: The positions of read pairs in the assembly.
fofn.con.pcap.results: The status of read pairs.
fofn.con.pcap.sort.stat: The distribution of read pair distances.
fofn.pcap.n50: The length statistics of contigs and supercontigs.
fofn.pcap.contigs*.snp: Alignment columns with potential SNPs.

File formats for the first five items were designed by J.C. Mullikin and D .B. Jaffe for use
in the mouse whole-genome assembly project.

2. The output files are simple text files, but they can be quite large and readers are not
advised to try and view them in a Unix text editor such as emacs or vi. Instead, view
the output files using a command-line pager such as 1ess or more. Using less,
one may scroll forward by pressing the letter £ on the keyboard and backward by
pressing the letter b, and quit the program by pressing the letter g. For example,
view the contigs.bases (Fig. 11.3.1) file by typing:

less contigs.bases

3. When reading the output files, it helps to understand the PCAP convention for naming
contigs and supercontigs. A supercontig is a list of contigs that are ordered and
oriented with respect to the genome; the supercontigs are named Supercontigo0,
Supercontigl, Supercontig2, and so on, in descending order of size. The

>Contig0.1
CGCGGAATTCCTCTCCACCTCTCTTACCCATGTGGCACTTAGCACACACTGCTTTGGATT
CTATTTAAACACTCAACTTGCTTATATCTTGGTTTCTTGGTTGTCCAAGGAGAGCACAGG
CCTCTGGAGGGCAGGAGATGTATAGAAAACGAATTTTTCTGTAACTAAAAGAAATTTTTG
TTTTTAGGCCGAGTCTTGTTCTGTCTTCCAGGCTGGAGTGCAATGGTGCAATTTCTGCTC
ACTGCAACCTCCGCCTCCTGGGTTCAAGCGTTTCTCCTGCCTCAGCCTCCCGAGTAGCTG
GGACTACAGGTGCCCTCCACCATGCCCAGCTAATTTTTGTATTTTCAGTAGAGATCGGGT
TTCATCATGGTGGTCATGCTGGTCTTGAACTCCTG

>Contig0.2
AATAAAACAGCCACTTAGCCACCAGCCTACTTAACAAAACCAGTGTCGTGGAAGTCCTGT
ATGCTGTTCCTCTGATTACAGCCCCTCCTCTATCCTGGAGGCAGCCTCTCTCCTAAATTC
TGGGGTAGTCACTCCCTGACTCTTTTAACAAAACAGCTGTATACCCCAAGCATGTATTCT
GAAACAGTAACAGTATTGCTGGCCGGGCGCGGTGGCTCACGCCTGTAATCCCAGCACTTT
GGGAGGCCGAGGCGGGCGGATCACGAGGTCAGGAGATCGAGACCACGGTGAAACCCCGTC
TCTACTAAAAATACAAAAAATTAGCCGGGCGCAGTGGTGGGCGCCTGTAGTCCCAGCTAC

Assembling
Sequences
I

11.3.3

Figure 11.3.1 The top part of the contigs.bases file produced on the example data set.

Current Protocols in Bioinformatics Supplement 11

supercontig SupercontigO
contig Contig0.1

gap 835 750 * 2

contig Contig0.2
supercontig Supercontigl
contig Contigl.1

gap -1772 687 * 24
contig Contigl.2
supercontig Supercontig?2
contig Contig2.1
supercontig Supercontig3
contig Contig3.1

Figure 11.3.2 The entire content of the supercontigs file produced on the example data set.

contigs that make up Supercontig0 are named Contig0.1, Contig0.2,
Contig0.3, and so forth. For example, Contig3 .1 corresponds to the first
contig in Supercontig3.

4. Using the command-line pager, examine the supercontigs file (Fig. 11.3.2). This
file shows, for each supercontig, the contigs and the gaps in the supercontig. The
file consists of lines, each starting with one of the three keywords: supercontig,
contig, or gap. Each of these three types of line has a slightly different format
(items in italics are supercontig name, contig name, or gap information):

supercontig line format:

supercontig supercontig name

contig line format:

contig contig name

gap line format:

gap gap_-length gap_length deviation * number_ of_read pailirs

The contig name on a contig line is the same as the one used in the file contigs .bases.
The contigs before and after the gap are linked by a number of read pairs, with a gap-
length estimate obtained from each read pair. The gap length and gap length deviation
are the average and standard deviation of the gap length estimates from the read pairs.

5. Next, examine the reads.placed file (Fig. 11.3.3). This file has a line for each
read that is used in the assembly. The line contains the following items from the left
to the right, separated by spaces.

Column 1: *

Column 2: name of the read

Column 3: left trimming position of the read

Column 4: number of bases in the trimmed read

Column 5: orientation of the read in a contig (0 = given, 1 = reverse)
Column 6: name of the contig

Column 7: name of the supercontig

Column 8: estimated start position of the trimmed read in the contig
Column 9: estimated start position of the trimmed read in the supercontig

The read may be trimmed by PCAP to remove poorly aligning ends. The left trimming
position of the read is the position immediately after the left poor end. If the left poor end
is empty, then the left trimming position is 1. In this file, the value 0 indicates that the read

Generating o . . L. . ey .
a Genome is in the same orientation in which it appears in the raw read file (its “given” orientation)
Assembly with and the value 1 indicates that the read is in its reverse orientation. Unfortunately, for
istorical reasons, in all other files produce , 1 stands for the same orientation
PCAP historical 1l other files produced by PCAP, 1 stands for th tat
11.34

Supplement 11 Current Protocols in Bioinformatics

ISB1287.x1 1 176 0 Contig0.1 Supercontig0 1 1

ISB943.y2 1 202 0 Contig0.1 Supercontig0 1 1

ISB545.x1 1 186 1 Contig0.1 Supercontig0 9 9

FFC97.y1 1 285 0 Contig0.1l Supercontig0 1 1

FFC463.y1 1 328 0 Contig0.1 Supercontig0 1 1
FFC13-P21.x1d-01-F 1 252 0 Contig0.1l Supercontig0 94 94
FFC1336.x1 1 302 0 Contig0.1 Supercontig0 94 94
FFC139.yl 18 467 0 Contig0.2 Supercontig0 1 1233
ISB764.x1 42 394 0 Contig0.2 Supercontig0 181 1413
ISB1666.yl 41 515 0 Contig0.2 Supercontig0 119 1351

* F * * ¥ * H ¥ * *

Figure 11.3.3 The top part of the reads.placed file produced on the example data set.

uml57el10.bl repeat
umy52ell.gl repeat
FFC608.x1 repeat
ISB770.x1 unused
ISB724.x1 unused
umm38bll.gl unused
umll6c03.gl unused
umz53f08.gl1 unused
unb97b05.gl1 unused

* % %k %k Ok %k %k X *

Figure 11.3.4 The entire content of the reads.unplaced file produced on the example data
set.

and 0 stands for the reverse orientation. The start position of the trimmed read in the
contig is with respect to the left end of the contig. For column 9, the lengths of the gaps that
occur upstream of the read in the supercontig are included to compute the start position
of the trimmed read with respect to the left end of the supercontig.

6. Examine the reads .unplaced file (Fig. 11.3.4). This file has a line for each read
that is not used in the assembly in the format:

* read.name short_explanation

Possible short explanations are chimera, repeat, short, and unused, but the explanations
are not always accurate. The repeat category of unplaced reads includes two groups
of reads: unique reads that have no overlap with other reads and highly repetitive reads
that have only repetitive overlaps with other reads. The designation short is given to an
unplaced read if the right clipping position of the read is not sufficiently larger than the
left clipping position of the read. The designation unused is given to an unplaced read
if the read is used in construction of the layout of a contig but removed in generation of
the consensus sequence of the contig. In general, a read may not be used in the assembly
if the read has no overlaps with other reads, is from a highly repetitive region of the
genome, or is in a region of the genome that is hard to assemble by PCAP.

7. Optional: Examine the . ace files. These files are intended for viewing the assembly
with the Consed program (see uniT 11.2). To view the contigs in Consed, start the
program with the - nophd option and open one of the following . ace files produced
by PCAP:

fofn.pcap.scaffold0.ace
fofn.pcap.scaffoldl.ace

Current Protocols in Bioinformatics

Assembling
Sequences
I

11.3.5

Supplement 11

Generating

a Genome
Assembly with
PCAP

11.3.6

Supplement 11

CO0.1 1 405

C0.2 1 27642 C2.1 1 631 1 01 C3.1 0443 101
Cl.1 1 15491

Cl.2 1 12401

C2.1 1 631 C0.2 1 27642 0 0 1

C3.1 1 443 C0.2 0 27642 1 01

Figure 11.3.5 The entire content of the readpairs.contigs file produced on the example
data set.

The scaffold*.ace files describe the structure of the supercontigs. PCAP distributes
the supercontigs among these files in such a way that each file contains multiple super-
contigs. To determine which scaffold*.ace file contains a particular supercontig,
divide the supercontig number by the number of .ace files and take the remainder.
Hence if searching for the file that contains Supercontig5s and there are two .ace
files, the remainder after dividing 5 by 2 is 1, and the desired supercontig will be present
in fofn.pcap.scaffoldl.ace.

Below are two more . ace files produced by PCAP:

fofn.pcap.singletonO.ace
fofn.pcap.singletonl.ace

The file fofn.pcap.singletonO.ace is an .ace file of singlet reads that
are linked by read pairs to or are associated with supercontigs in fofn.pcap.
scaffoldo.ace. The file fofn.pcap.singletonl.ace is similarly related to
fofn.pcap.scaffoldl.ace.

8. Examine the readpairs.contigs file (Fig. 11.3.5). This file has a line for each
contig in the assembly. Each line contains information on the relationship between
the two members of a read pair, and can help resolve problems in the assembly. The
first three columns of each line are:

Column 1: name of the current contig
Column 2: orientation of the contig (1 = given, 0 = reverse)
Column 3: length of the contig in bp

The contig name is in a short form like CO .1 for ContigO0. 1. If the current contig is
not linked by read pairs to contigs in other superconitgs, then there are no additional
columns on the line. Otherwise, there are up to four groups of six consecutive columns
each on the line. The groups represent the strongest read pair links between the current
contig and contigs in other supercontigs. The strength of a link is the number of read
pairs that support this link. The groups are in the same format and the format of group 1
is shown below:

Column 4: name of a contig in another supercontig

Column 5: orientation of the contig (1 = given, 0 = reverse)
Column 6: length of the contig in bp

Column 7: direction of the contig (1 = downstream, 0 = upstream)
Column 8: distance of the link in bp

Column 9: number of read pairs

If the link places the contig in group 1 downstream from the current contig, then the
direction of the contig in group 1 is 1. Otherwise, the direction is 0. If the contig in
group 1 overlaps with the current contig, then the distance of the link is 0. Otherwise, the
distance of the link is the distance between the contig in group 1 and the current contig.

Current Protocols in Bioinformatics

ISB1287.x1 1 176 €c0.1 1 1 no read pair

ISB943.y2 1 202 Cc0.1 1 1 S 4000 ISB943.x1 0 638 C0.2 1975 3207
ISB545.x1 0 186 C0.1 9 9 no read pair

FFC97.y1 1 285 C0.1 1 1 S 4000 FFC97.x1 0 583 C0.2 2652 3884
FFC463.y1 1 328 C0.1 1 1 no read pair

FFC13 -P21.x1d-01-F 1 252 C0.1 94 94 no read pair

FFC1336.x1 1 302 C0.1 94 94 no read pair

FFC139.y1 1 467 C0.2 1 1233 S 4000 FFC139.x1 0 475 C0.2 3354 4586
ISB764.x1 1 394 C0.2 181 1413 S 4000 ISB764.yl O 441 c0.2 5751 6983
ISB1666.y1 1 515 Cc0.2 119 1351 S 4000 ISB1666.x1 0 540 C0.2 4911 6143

Figure 11.3.6 The top part of the readpairs.reads file produced on the example data set.

This file is useful for finding assembly problems by examining read pair links between
contigs in different supercontigs. Weak read pair links may be due to wrong read pairs.
However, strong read pair links may indicate problems due to polymorphism, repeats, or
duplication.

9. Examine the readpairs.reads file (Fig. 11.3.6). This file shows the status of
read pairs in terms of the occurrences of reads in contigs and supercontigs. In other
words, the file is an extension of the reads .placed file by showing on the same
line the positions of the two paired reads in the assembly. The file has a line for each
read in the assembly. The left part of the line has 6 columns for the current read:

Column 1: name of the read

Column 2: orientation of the read (1 = given, 0 = reverse)
Column 3: length of the trimmed read in bp

Column 4: name of the contig where the read occurs
Column 5: position of the read in the contig

Column 6: position of the read in the supercontig

If the current read is not associated with another read by a read pair, then the remaining
part of the line is the phrase no read pair. Otherwise, the remaining part of the line
contains information about the read pair and the other read in the read pair:

Column 7: status of the read pair (S = satisfied, D = dissatisfied)
Column 8: the distance of the read pair in bp

Column 9: name of the other read

Column 10: orientation of the read (1 = given, 0 = reverse)
Column 11: length of the trimmed read in bp

Column 12: name of the contig where the read occurs

Column 13: position of the read in the contig

Column 14: position of the read in the supercontig

The file is arranged in increasing order of supercontig number. The lines for a supercontig
are arranged in the order of the positions of reads in the supercontig. This file is useful
for studying a region of the assembly by taking a close look at individual read pairs in
the region.

10. Examine the fofn.con.pcap.results file (Fig. 11.3.7). This file reports the
status of each read pair in the fofn . con file. See Support Protocol 2 on the format
of the fofn. con file. It has a line for each entry in the fofn. con file. The first
five columns on the line are from the fofn . con file. The remaining columns on the
line report the status of the read pair. Each of the nine status categories is indicated

by a short descriptive phrase, listed below:

Assembling
Sequences
I

11.3.7

Current Protocols in Bioinformatics Supplement 11

ISB943.y2 ISB943.x1 1000 7000 ISB943 3718 satisfied in a scaffold
FFC97.y1l FFC97.x1 1000 7000 FFC97 4282 satisfied in a scaffold
FFC139.y1l FFC139.x1 1000 7000 FFC139 3581 satisfied in a contig
FFC1964.y1l FFC1964.x1 1000 7000 FFC1964 3420 satisfied in a contig
ISB1666.yl ISB1666.x1 1000 7000 ISB1666 5020 satisfied in a contig
ISB757.x1 ISB757.y1l 1000 7000 ISB757 3902 satisfied in a contig
ISB2267.y2 ISB2267.x1 1000 7000 ISB2267 5099 satisfied in a contig
FFC1023.y1 FFC1023.x1 1000 7000 FFC1023 4916 satisfied in a contig
ISB764.x1 ISB764.yl 1000 7000 ISB764 5635 satisfied in a contig
ISB1475.x1 ISB1475.y1 1000 7000 ISB1475 6013 satisfied in a contig

Figure 11.3.7 The top part of the fofn.con.pcap.results file produced on the example data set.

Generating

a Genome
Assembly with
PCAP

11.3.8

Supplement 11

11.

12.

Category 1: satisfied in a contig. The two reads of the read pair occur in a contig
in the expected orientation and distance.

Category 2: unsatisfied in the distance in a contig. The reads occur in a contig in
the expected orientation but the distance between the reads in the contig is
outside the expected range.

Category 3: satisfied in a scaffold. The reads occur in different contigs of a
supercontig in the expected orientation and distance.

Category 4: unsatisfied in the distance in a scaffold. The reads occur in different
contigs of a supercontig only in the expected orientation. The distance
between the reads in the supercontig is outside the given range.

Category 5: singlet. One of the reads is not in any contig.

Category 6: short. One of the reads is in a short supercontig of length less than
10,000 bp.

Category 7: terminal. Each of the reads is in an end of a supercontig.

Category 8: redundant. The read pair is redundant. For a group of redundant
read pairs, only one of them is used in construction of supercontigs.

Category 9: unsatisfied. The read pair is not in any of the above categories.

For Categories 1 through 4, column 6 of the line is the distance between the reads in a
supercontig. The number of read pairs in each category is reported at the end of the file.
In particular, the read pairs in Category 9 are likely to be due to assembly problems or
wrong read pairs.

Examine the fofn.con.pcap.sort.stat file (Fig. 11.3.8). This file reports
the distribution of distances on column 6 of the .results file for read pairs in
Categories 1 through 4. For each read pair, the distance is the approximate distance
between the reads in a supercontig. The information contained in this file is useful
for producing accurate read pair distance ranges for PCAP by revising the initial
distance ranges in the . con file (see Support Protocol 2).

Examine the fofn.pcap.n50 file (Fig. 11.3.9). This file reports the statistics on
the numbers and lengths of contigs and supercontigs. It contains the total length of
contigs in bp, the number of contigs, the maximum contig length in bp, the contig
Njsp length, and the contig Nso number. The file also contains the statistics for major
contigs of length >1000 bp. The statistics for supercontigs and major supercontigs
are also in the file. In addition to the N5 statistics, the statistics for Njo through
Nigo are also reported. Nsg is defined such that half of the assembled base pairs
are contained in contigs of size Nsg or larger, and is a better measure of assembly
contiguity than average contig length.

Current Protocols in Bioinformatics

Total Percentage is the percentage of read pairs
that are within the distance given at left.
Incremental Percentage is the percentage of read pairs
that are between the previous and current distances.
A first line in the group:
FFC1002.x1 FFC1002.yl 1000 7000 FFC1002 4240 satisfied in a contig

A last line in the group:
ung44gll.bl ung44gll.gl 500 6000 ung44gll 4683 satisfied in a contig

Distance Total Percentage Incremental Percentage
400 2.19178 2.19178

800 6.57534 4.38356
1200 10.41096 3.83562
1600 13.97260 3.56164
2000 16.71233 2.73973
2400 19.72603 3.01370
2800 21.91781 2.19178
3200 23.28767 1.36986
3600 29.31507 6.02740
4000 34.79452 5.47945
4400 44.38356 9.58904
4800 59.72603 15.34247
5200 79.17808 9.45205
5600 87.12329 7.94521
6000 91.23288 4.10959
6400 92.60274 1.36986
6800 95.61644 3.01370
7200 96.71233 1.09589

1

[o]

0

[o]

0

[y

7600 98.08219 .36986

8400 98.90411 .82192

8800 99.17808 .27397

9200 99.45205 .27397

9600 99.72603 .27397

16800 100.00000 0.27397
Number of constraints in the group: 365

Figure 11.3.8 The entire content of the fofn.con.pcap.sort.stat file produced on the

example data set.

Total ctg sum: 57003, Number of <contigs : 6, Max ctg length: 27642
Ctg N40 length: 27642, Ctg N40 number: 1

Total major ctg sum: 55534, Number of major Contigs : 3
Major ctg N40 length: 27642, Major ctg N40 number: 1

Total ctg sum: 57003, Number of <contigs : 6, Max ctg length: 27642
Ctg N50 length: 154091, Ctg N50 number: 2

Total major ctg sum: 55534, Number of major Contigs : 3
Major ctg N50 length: 15491, Major ctg N50 number: 2

Total ctg sum: 57003, Number of <contigs : 6, Max ctg length: 27642
Ctg N60 length: 15491, Ctg N60 number: 2

Total major ctg sum: 55534, Number of major Contigs : 3
Major ctg N60 length: 15491, Major ctg N60 number: 2

Figure 11.3.9 The middle part of the fofn.pcap.n50 file produced on the example data set.

13. Examine the fofn.pcap.contigs*. snp file (Fig. 11.3.10). This file reports
information about potential SNPs in the contig sequences. PCAP computes an align-
ment of reads for each contig. A column of the alignment is good if the column has
exactly one base type with a high quality score. A potential SNP is scored if an align-
ment column has two or more base types with high quality scores and the column is
surrounded by five consecutive good columns on each side. For each potential SNP,
the file contains one line that begins with the keyword SP, and two or more lines that

Current Protocols in Bioinformatics

Assembling
Sequences
I

11.3.9

Supplement 11

Generating

a Genome
Assembly with
PCAP

11.3.10

Supplement 11

SP 16 10143 Contigl.2

BS A 20 1089 umv97a06.bl
BS A 48 1054 unedld02.gl
BS A 32 1028 unb01d03.gl
BS A 50 996 unf45d05.gl
BS A 49 974 umk08g0l.gl
BS A 53 0967 umy4lall.bl
BS A 50 407 une04d03.bl
BS A 57 1068 wunal%h06.bl
BS A 63 1045 umnl3f09.bl
BS A 63 1117 umv42f07.bl
BS A 52 638 uneO%h01l.bl
BS A 53 1074 umwl2d02.gl
BS A 63 1046 una09c06.gl
BS A 34 1028 umy51fl1l1.b2
BS T 60 1012 umv99bll.gl
BS T 35 991 umz90cl2.gl

Figure 11.3.10 The entire content of the fofn.pcap.contigsl.snp file produced on the
example data set.

begin with the keyword BS. The SP line provides information about the SNP, and
the BS lines provide information about each base in the alignment column in which
the SNP is contained. An SP line has four columns:

Column 1: SP (keyword)

Column 2: number of BS lines that follows

Column 3: position of the SNP in the contig sequence
Column 4: name of the contig

A BS line consists of five columns:

Column 1: BS (keyword)

Column 2: base

Column 3: quality score

Column 4: length of the trimmed read with the base
Column 5: name of the read

Advanced parameters

By changing its parameter values, one can tune PCAP to reduce running time or to tweak
the nature of the assembly that is produced.

14. Reduce the time requirement of PCAP. If the computer system is a shared memory
system with at least four processors, then one can tell PCAP to take advantage of the
four processors by providing the -y option:

. ./autopcap fofn -y 4 > auto.log &

This tells PCAP to perform the overlap task in parallel by doing the four subtasks
(computation of overlaps for each of four subsets of reads) at the same time, one subtask
per processor. The consensus generating task is also carried out in parallel. Performing
the overlap and consensus tasks in parallel typically reduces the running time of PCAP,
provided that the number of subtasks (four) does not exceed the number of processors
available on the system. Using a number of subtasks generally reduces the computation
time.

Current Protocols in Bioinformatics

15. Run PCAP on one processor. If the computer system has only one processor, then
use the one processor with the -p option:

. ./autopcap fofn -p 0 > auto.log &

This tells PCAP to run one subtask at a time. The default option is -p 1, which tells
PCAP to run all the subtasks at the same time.

16. If the computer system is short of memory for PCAP, trade time for space with the
-p and -y options:

../autopcap fofn -p 0 -y 8 > auto.log &

This tells PCAP to partition the task into eight subtasks and run one subtask at a time.
The memory requirement of the subtask is about one eighth that of the task. It is important
to tell PCAP to use only one processor with the -p 0 option. If the -p 1 option is used,
then PCAP runs eight subtasks at the same time, with each subtask requiring its own
space.

17. Control overlaps with high-quality base differences. If there are no SNPs in the reads,
then remove overlaps with the stringent -d option:

. ./autopcap fofn -d 90 > auto.log &
If there are SNPs in the reads, then tolerate overlaps with the loose -d option:

../autopcap fofn -d 150 > auto.log &

PCAP rejects overlaps with a quality difference score greater than the value for the -d
parameter. The quality difference score of an overlap is the sum of quality scores of base
differences. The quality score of a difference at bases of quality scores gl and q2 is max(0,
min(ql, q2) — 20). For example, an overlap with five differences at bases of quality score
45 has a quality difference score of 125, where the quality score of each base difference
is max(0, min(45,45) — 20) = 25.

18. Handle highly repetitive reads. Reject highly repetitive overlaps with the -1 and -s
options:

. ./autopcap fofn -1 50 -s 7000 > auto.log &
Tolerate highly repetitive overlaps with the -1 and - s options:

./autopcap fofn -1 50 -s 4000 > auto.log &

PCAP finds highly repetitive reads based on the depth of coverage by overlaps. A read
with a coverage depth greater than the value (called rcd) for the -1 parameter is
highly repetitive. An overlap with an adjusted similarity score less than the value for
the -s parameter is rejected. The adjusted similarity score of an overlap is obtained by
multiplying the similarity score of the overlap by a uniqueness factor. The similarity score
of an overlap is the sum of quality-weighted scores of base matches and differences in
the overlap. The quality-weighted score of a match at bases of quality values ql and g2
is 2 * min(ql, q2), whereas the quality-weighted score of a difference at bases of quality
values ql and q2 is -6 * min(ql, q2).

The uniqueness factor of an overlap depends on the uniqueness of the regions in the
overlap. If the regions in the overlap have a coverage depth greater than rcd, then the
uniqueness factor is 0. Otherwise, the uniqueness factor is between 0 and 4, where 1
corresponds to a coverage depth of rcd/2, 2 corresponds to a coverage depth of rcd/4,
3 corresponds to a coverage depth of rcd/8, and 4 corresponds to a coverage depth
of red/16. For example, an overlap of 50 matches at bases of quality values 20 with a
coverage depth of rcdl8 is 6000.

Current Protocols in Bioinformatics

Assembling
Sequences

11.3.11

Supplement 11

SUPPORT
PROTOCOL 1

Generating

a Genome
Assembly with
PCAP

11.3.12

Supplement 11

DOWNLOADING AND INSTALLING PCAP

This protocol provides instructions for downloading and installing the PCAP program.
Although the PCAP program runs on all Unix and Linux computer systems, each type
of computer system has its own version of PCAP binary code. If it is necessary to run
PCAP on two different types of computer systems, it is then necessary to download both
versions of PCAP binary code for the systems.

Necessary Resources

Hardware

Unix or Linux computer with 3 Gb of memory and 15 Gb of free hard disk space.
Large assembly projects require more memory and disk space.

Software

Versions of PCAP binary code for different types of Unix and Linux computer
systems are available at http://seq.cs.iastate.edu. PCAP is free to academic users,
but a licensing agreement is required for commercial users. If PCAP requires
more than 3 Gb of memory, then the 64-bit version of PCAP should be obtained.

Files

A small example data set is included in the PCAP package. A large example data
set and an assembly produced by PCAP on the data set are also available from
http:/l/seq.cs.iastate.edu.

1. Point the browser at http://seq.cs.iastate.edu and click the word Download on the top
line to the right of “PCAP and CAP3 code:”. This brings up a licensing agreement
for academic users. Fill out the form to register, read the agreement, and click the
button at the bottom of the page to accept the agreement.

2. Click the PCAP button on the next page. This brings up a list of . tar files of PCAP
code for a number of computer systems.

The PCAP code is available for the following types of computer systems.

64-bit Opteron Linux: a Linux system on 64-bit Opteron processors
64-bit Itanium Linux: a Linux system on 64-bit Itanium processors
32-bit Pentium Linux: a Linux system on 32-bit Pentium processors
64-bit Sparc Solaris: a Sun Solaris system on 64-bit Sparc processors
32-bit Sparc Solaris: a Sun Solaris system on 32-bit Sparc processors
64-bit Opteron Solaris: a Sun Solaris system on 64-bit Opteron processors
64-bit Alpha Tru64: an HP Unix system on 64-bit Alpha processors
64-bit Itanium Altix: a SGI Linux system on 64-bit Itanium processors
64-bit MIPS IRIX : a SGI Unix system on 64-bit MIPS processors
32-bit PowerPC G5 OS X: a 32-bit Mac Unix system on 64-bit PowerPC G5
processors

The PCAP code for additional types of computer systems will be added to the list in the
future. For example, when a 64-bit version named Tiger of Mac OS X is available, the
64-bit PCAP code for OS X will be added to the list.

3. Assuming that one’s computer system is a Linux system on 64-bit Opteron proces-
sors, click the . tar file for 64-bit Opteron Linux to download the PCAP code for
that computer system. Save the . tar file in a directory on the local computer system
and go to the directory. The . tar fileisnamed pcap.linux.opteroné4.tar.

Current Protocols in Bioinformatics

4. Unpack the . tar file in the directory by executing the command:
tar xvf pcap.linux.opteroné4.tar

The pcap code is in the directory pcap . 1inux . opteroné4. Go to the directory
and show the main/minor programs in the directory by executing the commands:

cd pcap.linux.opteroné4
1s

PREPARATION OF INPUT FILES

This protocol provides instructions for preparing one’s data set for PCAP. PCAP requires
a number of gzip-compressed base and quality files in FASTA format, a file of read
pairs, and a file of all base file names without the gz suffix. The contents and formats of
the input files are specified.

Necessary Resources

Hardware

Unix or Linux computer with 3 Gb of memory and 15 Gb of free hard disk space.
Large assembly projects require more memory and disk space.

Software

Versions of PCAP binary code for different types of Unix and Linux computer
systems are available at http://seq.cs.iastate.edu. PCAP is free to academic users,
but a licensing agreement is required for commercial users. If PCAP requires
more than 3 Gb of memory, then the 64-bit version of PCAP should be obtained.

Files

A small example data set is included in the PCAP package. A data set for input to
PCAP consists of base and quality files in FASTA format. The files can be
generated by the Phred program and screened for sequencing vectors by the
Cross_Match program. Both Phred and Cross_Match are from the
Phred/Phrap/Consed package (see UNITS 11.1 & 11.2).

1. Distribute the entire set of reads in multiple pairs of base and quality files in FASTA
format. For a 300-Mb assembly project, produce tens of pairs of base and quality
files such that no file is larger than 30 Mb. For a 3-Gb assembly project, produce
hundreds of pairs of base and quality files such that no file is larger than 30 Mb.

Each read name line begins with the character > followed by the name of the read.
There is no space between the character > and the read name. The read name and other
information must be separated by at least one space character (not a tab). Base and
quality files are named using the PHRAP/CAP3 convention under which, if a base file is
named xy z, its quality file is named xyz .qual. Base and quality files that follow this
convention are produced by programs in the popular Phred/Phrap/Consed package
(see UNITS 11.1 & 11.2), in which read sequences are screened for sequencing vectors with
Cross_Match.

For ease of use when creating the . con file of read-pair constraints, it is suggested that
all reads from a particular clone library be placed into a single pair of base and quality
files. This ensures that all read pairs in a file will be the same expected distance apart.
Do not mix reads from different libraries.

Current Protocols in Bioinformatics

SUPPORT
PROTOCOL 2

Assembling
Sequences
I

11.3.13

Supplement 11

2. Compress all base and quality files with the gzip utility before feeding them to
PCAP.

gzip is almost always preinstalled on Unix or Linux systems, but, if necessary, one
can obtain it from http://www.gzip.org. It is necessary to place the compressed base and
quality files into a single subdirectory where they can be read by PCAP.

3. After having prepared the directory of compressed base and quality files, create a
“base name” file (equivalent to the fofn file of Basic Protocol 1) that contains the
names of each of the read files without their . qual or . gz extensions.

For example, if there are FASTA and quality files named abc.gz, abc.qual.gz,
def.gz,def.qual.gz, xyz.gz, and xyz.qual.gz, and these files all reside in
the current directory, the base name file will contain the lines:

abc
def
Xyz
Remember that each base and quality file may contain multiple reads, so this file does

not contain one line for each read. The name of this base name file becomes the first
command-line argument passed to autopcap.

4. Create a file that describes the read pairs using the name of the base name file plus
the extension . con (for “constraint™). If the base name file is named £ofn, then the
file of read pairs has to be named fofn . con. Each line of the . con file (constraint
file) specifies one forward-reverse read pair of the form:

Columnl: ReadA
Column2: ReadB
Column3: MinDistance
Column4: MaxDistance
Column5: Template

where Reada and ReadB are the names of the two reads in the pair, MinDistance
and MaxDistance are the estimated minimum and maximum distances between
the reads in bp, and Template is the name of the subclone from which Reada
and ReadB were derived. The names and distances on each line are separated by
white space (blanks or tabs). All distances are positive, and MinDistance is less
than MaxDistance. The MinDistance and MaxDistance values should be
derived from knowledge of the average insert size of the plasmids from which the
pairs are derived; one should be liberal in one’s estimates, as a range that is too
narrow will adversely affect the results.

SubEll.bl SubEll.gl 1000 6000 SubEll
SubEll.b2 SubEll.gl 1000 6000 SubEll
SubEll.bl SubEll.g2 1000 6000 SubEll
SubEll.b2 SubEll.g2 1000 6000 SubEll
SubEll.bl SubEll.g3 1000 6000 SubEll
SubEll.b2 SubEll.g3 1000 6000 SubEll
SubA23.b SubA23.g 30000 50000 subaAa23

Generating
a Genome
Assembly with Figure 11.3.11 Specification of read pairs in the . con file when the same subclone is sequenced
PCAP multiple times.
11.3.14

Supplement 11 Current Protocols in Bioinformatics

Note that if the same subclone is sequenced multiple times, each possible combination
of right and left end reads must be present in . con file. For example, consider a
subclone named SubE11 of size between 1,000 to 6,000 bp and a subclone named
SubA23 of size between 30,000 to 50,000 bp. If one end of SubE11 is sequenced
twice to produce two reads named SubE11.b1 and SubE11.b2, and the other end
of SubE11 is sequenced three times to produce three reads SubE11.g1, SubE11.g2,
and SubE11.g3, then corresponding read pairs in the . con file must be specified as
shown in Figure 11.3.11.

GENERATING THE fofn.con FILE

The protocol below provides instructions for generating the fofn. con file with the
formcon2 program in the PCAP package. The reads in the example included in the
PCAP package are named using the WashU GSC naming convention in which b and g
indicate forward and reverse end reads respectively and the subsequent numbers indicate
multiple reads from the same subclone The use of the WashU naming scheme is not
mandatory, but if the naming convention is used, then the formcon2 utility in the
PCAP package can be used to create a properly formatted . con file.

Necessary Resources

Hardware

Unix or Linux computer with 3 Gb of memory and 15 Gb of free hard disk space.
Large assembly projects require more memory and disk space.

Software

Versions of PCAP binary code for different types of Unix and Linux computer
systems are available at http://seq.cs.iastate.edu. PCAP is free to academic users,
but a licensing agreement is required for commercial users. If PCAP requires
more than 3 Gb of memory, then the 64-bit version of PCAP should be obtained.

Files

A small example data set is included in the PCAP package. A data set for input to
PCAP consists of base and quality files in FASTA format. The files can be
generated by the Phred program and screened for sequencing vectors by the
Cross_Match program. Both Phred and Cross_Match are from the
Phred/Phrap/Consed package (see UNITS 11.1 &11.2). If the reads in the data
set follow the WashU GSC naming convention, one can use the formcon?2
program to generate a properly formated . con file for one’s data set.

1. Enter the PCAP distribution directory, and make a copy of the example data set by
typing:
Cp -r example test

2. Enter the newly-created test directory, and remove the fofn . con file by typing:

cd test
rm fofn.con

3. Uncompress the two base files by typing:

gunzip others.fasta.screen.gz
gunzip plasmid.fasta.screen.gz

Current Protocols in Bioinformatics

SUPPORT
PROTOCOL 3

Assembling
Sequences
I

11.3.15

Supplement 11

BASIC
PROTOCOL 2

Generating

a Genome
Assembly with
PCAP

11.3.16

Supplement 11

ISB943.y2 ISB943.x1 1000 7000 TISB943
FFC97.yl FFC97.x1 1000 7000 FFC97
FFC139.y1 FFC139.x1 1000 7000 FFC139
FFC1964.y1 FFC1964 .x1 1000 7000 FFC1964
ISB1666.yl ISB1666.x1 1000 7000 1ISB1666
ISB757.x1 ISB757.y1l 1000 7000 1ISB757
ISB2267.y2 ISB2267.x1 1000 7000 1IsSB2267
FFC1023.y1 FFC1023.x1 1000 7000 FFC1023
ISB764.x1 ISB764.y1l 1000 7000 ISB764
ISB1475.x1 ISB1475.y1 1000 7000 1ISB1475

Figure 11.3.12 The top part of the fofn. con file for the example data set.

4. Generate a . con file from each base file by using the formcon?2 program:

./formcon2 others.fasta.screen 1000 7000
./formcon2 plasmid.fasta.screen 500 6000

For the first base file, a minimum distance of 1000 and a maximum distance of 7000 are
used. For the second file, 500 and 6000 are used. The formcon?2 program produces a
file of read pairs named abc . con on a base file named abc. As described earlier, it is
recommended that all reads in a base file come from the same library so that all paired
reads in the file will be the same expected distance from apart. A good rule of thumb is
that given an average library insert size of X, the minimum distance between read pairs
will be 0.7X and the maximum distance will be 1.3X.

5. Concatenate the two .con files and place the results in the file fofn.con
(Fig. 11.3.12):

cat others.fasta.screen.con plasmid.fasta.screen.con >
fofn.con

6. Compress the two base files by typing:

gzip others.fasta.screen
gzip plasmid.fasta.screen

All files must be in the directory from which PCAP will be run and be in the same location
as the base name file.

GENERATING A LARGE-SCALE ASSEMBLY WITH PCAP USING
DISTRIBUTED COMPUTING

This protocol describes how PCAP can be used to generate a genome assembly of
gigabasepair (Gb) size, using distributed computing.

The autopcap script (Basic Protocol 1) was designed for <300-Mb genome-assembly
projects on a computer system with ten processors. The input files are in a common file
system accessible by all the processors. While this arrangement is acceptable for running
ten PCAP jobs at the same time, an input/output bottleneck would occur if 100 PCAP jobs
tried access to the common file system at the same time. To handle a genome-assembly
project of Gb size, PCAP requires a distributed cluster of 100 or more computers; the
procedure for achieving this is described in this protocol. In addition, PCAP requires a
computer with large memory for memory-intensive sequential computations.

Current Protocols in Bioinformatics

Four Perl scripts are used to coordinate and launch computational jobs to the distributed
cluster and the large-memory computer. A job for the cluster is defined by a Unix shell
script. The script moves input files from the common file system to the local disk of a
computational node on the cluster, runs the pcap or bconsen program on a processor
of the node, and moves the output files from the local disk to the common file system.
The sublapjobs Perl script generates many shell scripts for computing overlaps with
the pcap code and submits the shell scripts to the cluster for parallel execution of the
scripts. The runtigcode Perl script runs the bdocs, bclean, and bcontig pro-
grams in the proper order on the large-memory computer. The subsenjobs Perl script
generates many shell scripts for computing consensus sequences with the bconsen
code and submits the shell scripts to the cluster for parallel execution of the scripts. The
runstatcode Perl script runs the minor programs in the proper order.

Necessary Resources

Hardware

PCAP requires a distributed cluster of 100 Unix or Linux computers called
computational nodes. Each node has one or more 64-bit processors that share 8
Gb of memory and 20 Gb of free local disk space. Computational jobs on the
cluster are controlled by a batch job scheduler. Each computational job is
defined by a shell script, which is submitted to the scheduler with the gsub
command. In addition, PCAP requires a 64-bit Unix or Linux computer with 32
Gb of memory. The nodes on the distributed cluster and the large-memory
computer have access to a common file system with 1500 Gb of free disk space.
The common file system can be mounted by NFS or a similar shared file system.

Software

See Support Protocol 1 for instructions on downloading and installing PCAP. If the
distributed cluster and the large-memory computer are different types of
computer systems, which require different versions of PCAP binary code,
download the . tar file of PCAP code for the distributed cluster and the . tar
file of PCAP code for the large-memory computer. Install the PCAP code for the
distributed cluster in a directory accessible to the nodes on the cluster, and install
the PCAP code for the large-memory computer in a directory accessible to the
computer.

Files

PCAP takes as input a number of pairs of gzip-compressed base and quality files
in FASTA format, a file of read pairs, and a file of all base file names without the
gz suffix. See Support Protocol 2 for generation of input files. As explained
below, the compressed base/quality files are copied by computational jobs from
the common file system to the local disk of computational nodes. It is a good
idea to avoid large base/quality files, which take too long to be copied and hence
cause jobs to read them at the same time. Use small base/quality files that can be
coped to a local directory in a fraction of a second. Create a directory on the
common file system. Create a child directory in the directory and place all the
input files in the child directory.

1. Place the four Perl scripts (sublapjobs, runtigcode, subsenjobs, and
runstatcode) of the PCAP code in the parent directory of the common directory
containing the input files.

2. Customize the four Perl scripts to the distributed cluster and large-memory computer
being used. Each Perl script has an initial section of variable definitions that need to be
modified so that the script knows the special arrangements on the particular computer

Current Protocols in Bioinformatics

Assembling

Sequences
I

11.3.17

Supplement 11

Generating

a Genome
Assembly with
PCAP

11.3.18

Supplement 11

system being used. The variables and their initial definitions in the sublapjobs
and subsenjobs Perl scripts are explained below. Replace each initial definition
in double quotes with the correct definition for the computer system being used.

$CodeDirPath = "/home/xghuang/PCAP";

The variable $CodeDirPath holds the path of the directory containing the PCAP code
for the distributed cluster. This directory must be accessible to the nodes on the distributed
cluster.

$LocDiskDirPath = "/opt/scratch";

The variable sLocDiskDirPath holds the path of a directory on the local disk of
each node on the distributed cluster. The local directory is used by the pcap/bconsen
program to store temporarily input and output files. As to be explained later, using the
local disk on each node reduces an input/output bottleneck on the common file system.

$SJobQueue = "gblade";

The variable $JobQueue holds the name of a job queue on the distributed cluster. The
queue name is to be used by the Perl script in the -q option of the gsub command. All
shell script jobs are submitted to the queue for execution. To select a proper job queue,
see the manual for gsub on the distributed cluster.

SNodeNoProcNo = '"nodes=1:ppn=1";

The variable $SNodeNoProcNo holds the number of nodes requested by the job and
the number of processors requested on each node. The initial definition indicates that
one node is requested and one processor on the node is requested. The number of nodes
requested by each assembly job should always be one. If there is enough memory on the
node for each processor, one processor on the node is requested. Otherwise, all processors
on the node should be requested to keep the memory on the node from being allocated
to other jobs. The value of SNodeNoProcNo is to be used by the Perl script in the -1
option of the gsub command. For more information on the -1 option, see the manual
for gsub on the distributed cluster.

The initial definition of one variable in the runt igcode and runstatcode Perl
scripts needs to be modified. Replace the initial definition in double quotes with the
correct definition for the computer system.

$CodeDirPath = "/home/xghuang/PCAP";

The variable $CodeDirPath holds the path of the directory containing the PCAP code
for the large-memory computer. This directory must be accessible to the large-memory
computer.

. Log on to the front end node of the distributed cluster, go to the common input di-

rectory, and run the sublapjobs script with the base name file (say largefofn)
as an argument.

../sublapjobs largefofn -y 100 > sublap.log &

The -y 100 option tells the Perl script to submit 100 jobs to the distributed cluster. Each
Jjob runs the pcap program once and performs other operations that the pcap program
needs to run efficiently and successfully. The pcap program computes overlaps for a
subset of reads. The number of jobs should be large enough such that there is a sufficient
amount of memory on the node for the pcap program. The amount of memory required
by the pcap program on a subset of reads is 15 times the size of the subset, where the size
of the subset is the total number of raw bases in the whole set divided by the number of
jobs. Note that the same number of jobs (-y 100) must be used for the four Perl scripts.

The sublapjobs Perl script works in 100 iterations, generating a shell script in a file
uniquely named lap.$S.* in the directory /tmp, making the shell script executable,
and submitting the shell script to the cluster with the gsub command. The double dollar

Current Protocols in Bioinformatics

sign ($$) denotes the 1.D. of the process that executes the sublapjobs Perl script. The
number of a shell script file Lap . S. * is the iteration number minus 1. For example,
shell script file lap.$$.5 is generated in iteration 6. Each job is defined by a shell
script with the script number as the 1.D. of the job.

The shell script performs the following tasks in order. It goes to the local directory and
creates a working directory with a unique name in the local directory. It goes to the
working directory and copies the file largefofn from the common input directory to
the working directory. It runs the pcap program in the working directory with the file
largefofn given to pcap as an argument, the path of the common input directory
given to pcap in the -x option, the number of jobs (100) given to pcap in the -y option,
and the job 1.D. given to pcap in the -z option. It copies the output files produced by
pcap to the common input directory. It removes the working directory.

A pcap job refers to the pcap program in execution. Since each shell script job runs the
pcap program once, the number of shell script jobs is equal to the number of pcap jobs
and the 1.D. of the shell script job is the 1.D. of the pcap job.

The pcap program uses the number of jobs given in the -y option and the 1.D. of the
current job given in the -z option to determine a unique subset of reads and compute
overlaps for the subset of reads. To reduce the input/output bottleneck to the common input
directory, the pcap program copies the pairs of compressed base and quality files one pair
at a time from the common input directory to the working directory. The pcap program
uncompresses the current pair of files in the working directory, reads the uncompressed
files in the working directory, and removes them from the working directory when done.
At any time, only one pair of base/quality files are kept in the working directory on the
local disk, so the availability of local disk space should not be an issue.

4. Wait until all the shell script jobs submitted by the Perl script in the last step
are successfully completed. For example, when shell script job 3 is successfully
completed, the file largefofn.pcap.info3 should be in the common input
directory and the last line in the file should read:

The pcap job is completed.

One can proceed to the next step only after all the jobs are successfully completed.
This is because the script in the next step uses the output files from each job.
Depending on the size of the input files and the speed of the distributed cluster, the
jobs may take 10 to 50 hr to complete.

5. Log on to the large-memory computer and go to the common input directory. Run
the runtigcode Perl script with the file largefofn as an argument.

./runtigcode largefofn -y 100 > runtig.log &

The runtigcode Perl script runs, on the large-memory computer, the bdocs and
bclean programs to remove low-quality overlaps, and the bcontig program to pro-
duce the layouts of contigs and supercontigs. The supercontigs are distributed in 100
files named largefofn.pcap.scaffold* . The supercontigs in a file large-
fofn.pcap.scaffold* are to be used by the bconsen job of the same number. For
example, the file Largefofn.pcap.scaffolds corresponds to bconsen job 5.

6. Wait until the script is completed. When it is done, the last line in the file large-
fofn.pcap.scaffold. info should read:

The bcontig job is completed.

The script may take 5 to 20 hr to complete.

7. Log on to the front-end node of the distributed cluster, go to the common input

directory, and run the subsenjobs script with the file 1 arge f ofn as an argument.
Assembling

../subsenjobs largefofn -y 100 > subsen.log & Sequences

11.3.19

Current Protocols in Bioinformatics Supplement 11

Generating

a Genome
Assembly with
PCAP

11.3.20

Supplement 11

The -y 100 option tells the Perl script to submit 100 jobs to the distributed clus-
ter. Each job runs the bconsen program once and performs other operations that
the bconsen program needs to run efficiently and successfully. In addition to the file
largefofn, bconsen job $k needs to use the file largefofn.con and the file
largefofn.pcap.scaffoldsk for any Sk between 0 and 99. Thus shell script
Sk produced by subsenjobs copies the file largefofn. con and the file large-
fofn.pcap.scaffoldSk fo the working directory for bconsen job $k. The rest of
the subsenijobs Perl script is similar in structure to the sublapjobs Perl script.

8. Wait until all the jobs submitted by the Perl script above are successfully completed.
For example, when shell script job 5 is successfully completed, the file large-
fofn.pcap.consen.pros5 should be in the common input directory and the
last line in the file should read:

The bconsen job is completed.

The jobs may take 5 to 30 hr to complete.

9. Log on to the large-memory computer and go to the common input directory. Run
the runstatcode Perl script with the file largefofn as an argument.

./runstatcode largefofn -y 100 > runstat.log &

The runstatcode Perl script runs on the large-memory computer, the minor pro-
grams to format the assembly and collect statistics on it. When the script is successfully
completed, the last line in the file runstat . log should read:

The runstatcode task is completed

GUIDELINES FOR UNDERSTANDING RESULTS

An assembly is evaluated in terms of continuity and accuracy. The continuity level of the
assembly is indicated by the N5 contig and supercontig lengths in the . pcap .n50 file,
and the percentage of reads in the assembly. The percentage of reads in the assembly is
computed by counting the number of reads in the reads .placed file and the number
of reads in the reads .unplaced file. For a normal assembly produced on a data set
of five-fold coverage, the N5g contig length is at least 10 kb, the N5 supercontig length
is at least 1 Mb, and the percentage of reads in the assembly is at least 70%.

The accuracy of the assembly at the read level may be indicated by the percentage of
read pairs that are satisfied in both orientation and distance, which is reported at the end
of the .pcap.results file. For a normal assembly produced on a data set of five-
fold coverage, the percentage of read pairs that are satisfied in orientation and distance
is at least 40%. The accuracy of the assembly at the base level may be indicated by
the consensus base quality scores in the contigs.quals file. The accuracy of the
assembly at the read and base levels may be evaluated by comparing the consensus
sequences in the contigs.bases file with the finished sequence of a closely related
genome if it is available. The comparison can be done with the BLAT program (Kent,
2002; also see UNIT 1.4).

If contigs from different supercontigs are linked by a sufficient number of read pairs (say
at least 5), then those contigs may be misassembled. Those contigs are reported in the
readpairs.contigs file. The read pairs are reported in the readpairs.reads
file.

The polymorphism rate of the genome is estimated by dividing the total number of
consensus bases in the . pcap.n50 file by the total number of SP lines in the . con-
tigs*.snp files. For an inbred strain, a rate less than one SP line in 1000 bp is
common.

Current Protocols in Bioinformatics

The alignment of reads in every contig can be viewed in Consed with the -nophd option
(see uNiT 11.2). The reads in the contig should be well aligned. Consed has features to
locate the regions of contigs with low quality scores.

The quality of the assembly is affected by a number of factors. If the genome has a
very high percentage of highly repetitive elements, a high polymorphism rate, whole-
chromosome duplications, or a very low coverage by the data set, then the genome is
difficult to assemble and the N5 contig and supercontig lengths on the assembly are very
low. If a serious error occurs in the assembly process, then the N5 contig and supercontig
lengths of the assembly are also very low.

Very low Njsgcontig and supercontig lengths indicate that the assembly as a whole
has gone poorly. The following steps may be useful for finding the cause for the poor
assembly.

First, examine the second last line of the .pcap.bform.info file with the tail
command. The total number of reads in the input data set is reported on the line. If the
total number of reads is much lower than expected, then many reads may have been left
out of the input files in the common input directory. Otherwise, examine the last line of
the .pcap.docs.info0 file with the tail command. The total number of overlaps
computed by all the pcap jobs is reported on the first part of the line. If the total number
of overlaps is much lower than the average depth of coverage times the total number of
reads in the input data set, then an error may have occurred in the overlap computation
by the pcap jobs. Otherwise, examine the last line of the pcap.clean.info file
with the tail command. The total number of unique overlaps, which are not over any
repetitive reads, is reported on this line. If the number of unique overlaps is much lower
than the total number of overlaps, then the cause for the poor assembly may be that the
genome has a very high percentage of highly repetitive elements. Otherwise, use the
grep command on the .pcap.scaffold.info file to locate a line containing the
phrase No. of good overlaps. The number on this line is the number of good
overlaps that remain after low-quality unique overlaps are removed. If the number of
good overlaps is much lower, then the genome may be difficult to assemble.

COMMENTARY

Background Information

The PCAP program and its predecessor
CAP3 (Huang and Madan, 1999) were de-
veloped and improved over a cumulative pe-
riod of 10 years. The programs are based on
three computational techniques. A fast com-
parison method (Pearson and Lipman, 1988;
Altschul et al., 1990) is used to quickly find
pairs of reads with a potential overlap. Dy-
namic programming methods (Needleman and
Wunsch, 1970; Smith and Waterman, 1981)
are used to compute overlaps between reads
and to construct alignments of reads in contigs.
A maximum-weight spanning tree method
(Kruskal, 1956) is used to construct contigs
and supercontigs. The PCAP program has
undergone many iterations of improvements
based on feedback from its users. The PCAP
program has a number of features to address
common problems in reads. The PCAP pro-

Current Protocols in Bioinformatics

gram is easy to run and portable to Unix and
Linux computers.

The PCAP program works in three major
phases. In phase 1, the whole set of reads is
partitioned into subsets of similar sizes. Each
subset is compared with the whole set to com-
pute overlaps between reads in the subset and
reads in the whole set. The comparisons for the
subsets are performed in parallel. The pairs of
reads with two close word matches of 12 bp
are quickly located. For each pair of reads,
an overlap between the reads is computed by
a banded dynamic programming algorithm.
A region of a read is identified to be highly
repetitive if it occurs in many overlaps. Over-
laps involving only highly repetitive regions
are removed. The remaining overlaps are
called unique overlaps.

In phase 2, poor ends of each read are deter-
mined and removed based on unique overlaps.

Assembling
Sequences
I

11.3.21

Supplement 11

Generating

a Genome
Assembly with
PCAP

11.3.22

Supplement 11

Unique overlaps are ranked in decreasing order
of overlap strength. The strength of an overlap
depends on the similarity level of the overlap
and the depths of coverage for the read posi-
tions in the overlap. The overlaps of strength
greater than a cutoff are called good overlaps.
Reads are assembled into contigs by process-
ing the good overlaps in the decreasing order.
Corrections to contigs are made based on read
pairs. Corrections include breaking a contig in
the middle and joining broken contig pieces.

Links of read pairs between contigs are
ranked in decreasing order of link strength.
Contigs are connected into supercontigs by
processing the links in the decreasing order.
Corrections to supercontigs are made based
on read pairs. The supercontigs are arranged in
decreasing order of size, which are named Su -
percontig0, Supercontigl, Super-
contig2, and so forth. Then the supercon-
tigs are partitioned into groups, where a group
consists of supercontigs with the same remain-
der after dividing their supercontig numbers by
the number of groups. This partition ensures
that the groups are balanced in supercontig
size.

In phase 3, consensus sequences for the su-
percontigs in each group are computed. The
computations for the groups of supercontigs
are performed in parallel with each group of
supercontigs assigned to one processor. The
supercontigs in a group are considered one at a
time. For the current supercontig, attempts are
made to close gaps between contigs in the su-
percontig, with repetitive reads that are linked
by read pairs to the supercontig. The resulting
contigs in the supercontig are considered one
at a time. For the current contig, a multiple
alignment of reads in the contig is constructed
and a consensus sequence is generated from
the alignment. Read base quality scores are
used in the computation of multiple alignments
and generation of consensus sequences.

Critical Parameters and
Troubleshooting

If the aut opcap job fails to produce an as-
sembly on the example data set, double check
to make that the right version of PCAP for
the particular computer system is installed in
the parent directory of the directory contain-
ing the example data set and that the example
data setis there. In general, the aut opcap job
may fail for anumber of reasons: missing input
files, input files in incorrect format, insufficient
memory, insufficient disk space, incorrect use
of PCAP, and unknown bugs in PCAP.

Most common problems occur in the in-
put files, e.g., the base file and quality file
are not consistent, a read occurs in one file,
but not in the other file, the reads in the two
files do not occur in the same order, The name
and the description of a read are separated by
other white spaces instead of blank spaces. The
base and quality files are not compressed, or
compressed with another program instead of
gzip.

If a very poor assembly is produced by
PCAP on one’s data set, one may run PCAP on
an example data set of size similar to the size
of the data set. If the assembly on the example
data set is much better than the assembly on
one’s data set, then the poor assembly may be
due to that data set.

The number of subtasks given in the -y
option of each of the five Perl scripts must
not exceed the number of supercontigs in the
resulting assembly. Otherwise, some group of
supercontigs would be empty and the bcon-
sen program would complain that it can not
open .pcap.scaffold* files.

If an error occurs during execution of a
shell script that is submitted by sublapjobs
to the distributed cluster. The error message
from the cluster is reported in a file named
lap.$s.Ssid.err in the /tmp directory,
where the notation $$ denotes the 1.D. of the
sublapjobs process and $sid is the I.D.
of the shell script job. The error message from
the cluster for subsenjobs is reported in a
file named sen.$$.$sid.err. The error
message may be useful for finding the cause
of the error.

The -r option is used only for running
pcap and bconsen programs on a small
local disk, where the current directory does
not have any base/quality files. The current
directory is the one with the file of base file
names that is given as an argument to the
pcap/bconsen program. If the current di-
rectory has all the input files, then the -r op-
tion must not be used. Otherwise, the input
files in the current directory would be removed
by the jobs.

A pcap job is the pcap program in exe-
cution. If many jobs want to copy a file from
a global directory to a local directory at the
same time, then the system may not be able to
execute all the copy operations successfully.
As a result, the file is not copied to the local
directory for some jobs. A change is made to
pcap and bconsen to deal with this prob-
lem. If a cp command is not successful for a
pcap/bconsen job, then the job will sleep
for up to 16 sec and then attempt cp again. A

Current Protocols in Bioinformatics

pcap/bconsen job will attempt cp at most
11 times. The job will quit if all 11 attempts
fail.

Suggestions for Further Analysis

Other Assembly Programs

A number of whole-genome assembly pro-
grams have been developed: Celera Assembler
(Myers et al., 2000), JAZZ (Aparicio et al.,
2002), Arachne (Jaffe et al., 2003), PHUSION
(Mullikin and Ning, 2003), PCAP (Huang
et al., 2003), and Atlas (Havlak et al., 2004).
Those programs have been used in a number
of genome assembly projects. Efforts are un-
der way to determine the strengths and weak-
nesses of the programs. It is likely that some
programs are better than other programs for
certain assembly projects. However, no pro-
gram is perfect. Continued improvements to
the programs are necessary to meet the needs
of genome assembly projects.

The authors of this unit are developing Perl
scripts for generating input files for PCAP
from files in the NCBI trace archive.

Acknowledgements

The authors of this unit wish to thank Asif
Chinwalla, LaDeana Hillier, Pat Minx, and
Rick Wilson of Genome Sequencing Center,
Washington University Medical School, for
suggestions. The authors also thank Liang Ye
for the initial typesetting of this unit.

Literature Cited

Altschul, S.F., Gish, W, Miller, W., Myers,
E.W., and Lipman, D.J. 1990. Basic local
alignment search tool. J. Mol. Biol. 215:403-
410.

Aparicio, S., Chapman, J., Stupka, E., Putnam, N.,
Chia, J.M., Dehal, P., Christoffels, A., Rash, S.,
Hoon, S., Smit, A.F., Gelpke, M.D., Roach, J.,
Oh, T., Ho, I.Y., Wong, M., Detter, C., Verhoef,
F, Predki, P, Tay, A., Lucas, S., Richardson, P.,
Smith, S.F,, Clark, M.S., Edwards, Y.J., Doggett,
N., Zharkikh, A., Tavtigian, S.V., Pruss, D.,
Barnstead, M., Evans, C., Baden, H., Powell,
J., Glusman, G., Rowen, L., Hood, L., Tan,
Y.H., Elgar, G., Hawkins, T., Venkatesh, B.,
Rokhsar, D., and Brenner, S. 2002. Whole-
genome shotgun assembly and analysis of the
genome of Fugu rubripes. Science 297:1301-
1310.

Havlak, P., Chen, R., Durbin, K.J., Egan, A., Ren,
Y., Song, X.-Z., Weinstock, G.M., and Gibbs,
R. 2004. The Atlas genome assembly system.
Genome Res. 14:721-732.

Current Protocols in Bioinformatics

Huang, X. and Madan, A. 1999. CAP3: A DNA se-
quence assembly program. Genome Res. 9:868-
8717.

Huang, X., Wang, J., Aluru, S., Yang, S.-P., and
Hillier, L. 2003. PCAP: A whole-genome as-
sembly program. Genome Res. 13:2164-2170.

Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E.,
Lindblad-Toh, K., Mesirov, J.P., Zody, M.C. and
Lander, E.S. 2003. Whole-genome sequence as-
sembly for mammalian genomes: ARACHNE
2. Genome Res. 13:91-96.

Kent, W.J.2002. BLAT: The BLAST-like alignment
tool. Genome Res. 12:656-664.

Kruskal, J.B. 1956. On the shortest spanning subtree
of a graph and the traveling salesman problem.
Proc. Amer. Math. Soc. 7:48-50.

Mullikin, J.C. and Ning, Z. 2003. The Phusion as-
sembler. Genome Res. 13:81-90.

Myers, E.W., Sutton, G.G., Delcher, A.L., Dew,
LM., Fasulo, D.P, Flanigan, M.J., Kravitz,
S.A., Mobarry, C.M., Reinert, K.H., Reming-
ton, K.A., Anson, E.L., Bolanos, R.A., Chou,
H.H., Jordan, C.M., Halpern, A.L., Lonardi, S.,
Beasley, E.M., Brandon, R.C., Chen, L., Dunn,
PJ., Lai, Z., Liang, Y., Nusskern, D.R., Zhan,
M., Zhang, Q., Zheng, X., Rubin, G.M., Adams,
M.D., and Venter, J.C. 2000. A whole-genome
assembly of Drosophila. Science 287:2196-
2204.

Needleman, S.B. and Wunsch, C.D. 1970. A general
method applicable to the search for similarities
in the amino acid sequences of two proteins. J.
Mol. Biol. 48:443-453.

Pearson, W.R. and Lipman, D. 1988. Improved tools

for biological sequence comparison. Proc. Natl.
Acad. Sci. U.S.A. 85:2444-2448.

Smith, T.F. and Waterman, M.S. 1981. Identifi-
cation of common molecular subsequences. J.
Mol. Biol. 147:195-197.

Key References
Huang et al., 2003. See above.

This article describes the methods used in PCAP in
detail.

Internet Resources
http://seq.cs.iastate.edu

This site contains documentation on PCAP and ex-
ample test data sets.

Contributed by Xiaoqiu Huang
Iowa State University
Ames, Iowa

Shiaw-Pyng Yang
Washington University Medical School
St. Louis, Missouri

Assembling
Sequences
I

11.3.23

Supplement 11

