
Sequencing costs have fallen so dramatically that a sin-
gle laboratory can now afford to sequence large, even 
human-sized, genomes. Ironically, although sequencing  
has become easy, in many ways, genome annotation has 
become more challenging. Several factors are respon-
sible for this. First, the shorter read lengths of second-
generation sequencing platforms mean that current 
genome assemblies rarely attain the contiguity of the 
classic shotgun assemblies of the Drosophila mela-
nogaster 1,2 or human genomes3,4. Second, the exotic 
nature of many recently sequenced genomes also pre-
sents annotation challenges, especially for gene finding. 
Whereas the first generation of genome projects had 
recourse to large numbers of pre-existing gene mod-
els, the contents of today’s genomes are often terra 
incognita. This makes it difficult to train, optimize and  
configure gene prediction and annotation tools.

A third new challenge is posed by the need to 
update and merge annotation data sets. RNA-sequencing 
data (RNA-seq data)5–8 provide an obvious means for 
updating older annotation data sets; however, doing so 
is not trivial. It is also not straightforward to ascertain 
whether the result improves on the original annotation. 
Furthermore, it is not unusual today for multiple groups 
to annotate the same genome using different annota-
tion procedures. Merging these to produce a consensus 
annotation data set is a complex task.

Finally, the demographics of genome annotation 
projects are changing as well. Unlike the massive 
genome projects of the past, today’s genome annota-
tion projects are usually smaller-scale affairs and often 
involve researchers who have little bioinformatics and 
computational biology expertise. Eukaryotic genome 
annotation is not a point-and-click process; however, 

with some basic UNIX skills, ‘do-it-yourself ’ genome 
annotation projects are quite feasible using present-
day tools. Here we provide an overview of the eukary-
otic genome annotation process, describe the available 
toolsets and outline some best-practice approaches.

Assembly and annotation: an overview
Assembly. The first step towards the successful annota-
tion of any genome is determining whether its assem-
bly is ready for annotation. Several summary statistics 
are used to describe the completeness and contiguity 
of a genome assembly, and by far the most important 
is N50 (BOX 1). Other useful assembly statistics are the 
average gap size of a scaffold and the average number 
of gaps per scaffold (BOX 1). Most current genomes are 
‘standard draft’ assemblies, meaning that they meet 
minimum standards for submission to public data-
bases9. However, a ‘high-quality draft’ assembly9 is a 
much better target for annotation, as it is at least 90% 
complete.

Although there are no strict rules, an assembly with 
an N50 scaffold length that is gene-sized is a decent 
target for annotation. The reason is simple: if the 
scaffold N50 is around the median gene length, then 
~50% of the genes will be contained on a single scaf-
fold; these complete genes, together with fragments 
from the rest of the genome, will provide a sizable 
resource for downstream analyses10,11. As can be seen 
in FIG. 1, median gene lengths are roughly propor-
tional to genome size. Thus, if the size of the genome 
of interest is known, it is possible to use this figure  
to obtain a rough estimate of gene lengths and hence to  
obtain an estimate of the minimum N50 scaffold 
length for annotation. CEGMA12 provides another, 
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Genome annotation 
A term used to describe two 
distinct processes. ‘Structural’ 
genome annotation is the 
process of identifying genes 
and their intron–exon 
structures. ‘Functional’ genome 
annotation is the process of 
attaching meta-data such as 
gene ontology terms to 
structural annotations. This 
Review focuses on structural 
annotation.

RNA-sequencing data 
(RNA-seq data). Data sets 
derived from the shotgun 
sequencing of a whole 
transcriptome using 
next-generation sequencing 
(NGS) techniques. RNA-seq 
data are the NGS equivalent  
of expressed sequence tags 
generated by the Sanger 
sequencing method.
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Abstract | The falling cost of genome sequencing is having a marked impact on the 
research community with respect to which genomes are sequenced and how and where 
they are annotated. Genome annotation projects have generally become small-scale 
affairs that are often carried out by an individual laboratory. Although annotating  
a eukaryotic genome assembly is now within the reach of non-experts, it remains a 
challenging task. Here we provide an overview of the genome annotation process and 
the available tools and describe some best-practice approaches.
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N50 
A basic statistic for describing 
the contiguity of a genome 
assembly. The longer the N50 
is, the better the assembly is. 
See box 1 for details.

Long interspersed nuclear 
elements 
(LINEs). Retrotransposons that 
encode reverse transcriptase 
and that make up a substantial 
fraction of many eukaryotic 
genomes. 

Short interspersed nuclear 
elements 
(SINEs). Retrotransposons  
that do no encode reverse 
transcriptase and that 
parasitize LINE elements.  
ALU elements, which are very 
common in the human genome, 
are one example of a SINE.

complementary means of estimating the completeness 
and contiguity of an assembly. This tool screens an 
assembly against a collection of more or less universal 
eukaryotic single-copy genes and also determines the 
percentage of each gene lying on a single scaffold.

Obtaining a high-quality draft assembly is an 
achievable goal for most genome projects. If an assem-
bly is incomplete or if its N50 scaffold length is too 
short, we would recommend doing additional shotgun 
sequencing, as tools are available for the incremental 
improvement of draft assemblies13–15. 

Annotation. Although genome annotation pipelines 
differ in their details, they share a core set of features. 
Generally, genome-wide annotation of gene structures 
is divided into two distinct phases. In the first phase, 
the ‘computation’ phase, expressed sequence tags 
(ESTs), proteins, and so on, are aligned to the genome 
and ab initio and/or evidence-driven gene predictions 
are generated. In the second phase, the ‘annotation’ 

phase, these data are synthesized into gene annotations 
(BOX 2). Because this process is intrinsically compli-
cated and involves so many different tools, the pro-
grams that assemble compute data (evidence) and use 
it to create genome annotations are generally referred  
to as annotation pipelines. Current pipelines are focused 
on the annotation of protein-coding genes, although 
Ensembl also has some capabilities for annotating 
non-coding RNAs (ncRNAs). Tools for annotation  
of ncRNAs are described in BOX 3.

Step one: the computation phase
Repeat identification. Repeat identification and mask-
ing is usually the first step in the computation phase 
of genome annotation. Somewhat confusingly, the 
term ‘repeat’ is used to describe two different types 
of sequences: ‘low-complexity’ sequences, such as 
homopolymeric runs of nucleotides, as well as trans-
posable (mobile) elements, such as viruses, long inter-
spersed nuclear elements (LINEs) and short interspersed 
nuclear elements (SINEs)16,17. Eukaryotic genomes can 
be very repeat rich; for example, 47% of the human 
genome is thought to consist of repeats18, and this 
number is likely to be the lower limit. Also, the borders 
of these repeats are usually ill-defined; repeats often 
insert within other repeats, and often only fragments 
within fragments are present — complete elements are 
found quite rarely. Repeats complicate genome annota-
tion. They need to be identified and annotated, but the 
tools used to identify repeats are distinct from those 
used to identify the genes of the host genome.

Identifying repeats is complicated by the fact 
that repeats are often poorly conserved; thus, accu-
rate repeat detection usually requires users to create  
a repeat library for their genome of interest. Available tools 
for doing so generally fall into two classes: homology- 
based tools19–21 and de novo tools22–25 (for an overview, 
see REFS 26,27). Note, however, that de novo tools iden-
tify repeated sequences — not just mobile elements 
— so their outputs can include highly conserved pro-
tein-coding genes, such as histones and tubulins, as well 
as transposon sequences. Users must therefore care-
fully post-process the outputs of these tools to remove 
protein-coding sequences. These same outputs prob-
ably also contain some novel repeat families. Repeats 
are interesting in and of themselves, and the life cycles  
and phylogenetic histories of these elements are  
growing areas of research17,28,29. Adequate repeat anno-
tation should thus be a part of every genome annotation  
project.

After it has been created, a repeat library can be used 
in conjunction with a tool such as RepeatMasker30, 
which uses BLAST31–33 and Crossmatch34 to iden-
tify stretches of sequence in a target genome that are 
homologous to known repeats. The term ‘masking’ 
simply means transforming every nucleotide identi-
fied as a repeat to an ‘N’ or, in some cases, to a lower 
case a, t, g or c — the latter process is known as ‘soft 
masking’32,35. The masking step signals to downstream 
sequence alignment and gene prediction tools that 
these regions are repeats. Failure to mask genome 

Box 1 | Common statistics for describing genome assemblies

Genome assemblies are composed of scaffolds and contigs. Contigs are contiguous 
consensus sequences that are derived from collections of overlapping reads. Scaffolds 
are ordered and orientated sets of contigs that are linked to one another by mate pairs 
of sequencing reads.

Scaffold and contig N50s
By far the most widely used statistics for describing the quality of a genome assembly 
are its scaffold and contig N50s. A contig N50 is calculated by first ordering every 
contig by length from longest to shortest. Next, starting from the longest contig,  
the lengths of each contig are summed, until this running sum equals one-half of the 
total length of all contigs in the assembly. The contig N50 of the assembly is the length 
of the shortest contig in this list. The scaffold N50 is calculated in the same fashion but 
uses scaffolds rather than contigs. The longer the scaffold N50 is, the better the 
assembly is. However, it is important to keep in mind that a poor assembly that has 
forced unrelated reads and contigs into scaffolds can have an erroneously large N50. 
Note too that scaffolds and contigs that comprise only a single read or read pair — 
often termed ‘singletons’ — are frequently excluded from these calculations, as are 
contigs and scaffolds that are shorter than ~800 bp. The procedures used to calculate 
N50 may therefore vary between genome projects.

Percent gaps 
Another important assembly statistic is its percent gaps. Unsequenced regions 
between mate pairs in contigs and between scaffolds are often represented as  
runs of ‘N’s in the final assembly. Thus two assemblies can have identical scaffold N50s 
but can still differ in their percent gaps: one has very few gaps, and the other is 
heavily peppered with them. Estimates of gap lengths are often made based on 
library insert sizes and read lengths; when these are available, the number of ‘N’s in 
these gaps usually, but not always, represents the most likely estimate of that gap’s 
size; sometimes, all gaps are simply represented by a run of 50 ‘N’s regardless of  
their size.

Percent coverage 
Percent coverage is used in two senses: genome coverage and gene coverage.  
The first number, genome coverage, refers to the percentage of the genome that is 
contained in the assembly based on size estimates; these are usually based on 
cytological techniques116,117. Genome coverage of 90–95% is generally considered to 
be good, as most genomes contain a considerable fraction of repetitive regions that 
are difficult to sequence. So it is not a cause for concern if the genome coverage of an 
assembly is a bit less than 100%. Gene coverage is the percentage of the genes in the 
genome that are contained in the assembly. Gene and genome coverage can differ 
from one another, as hard-to-assemble repetitive regions are often gene-poor. As a 
result, the percentage gene coverage is often substantially larger than the percentage 
genome coverage for some difficult-to-assemble genomes.
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Figure 1 | Genome and gene sizes for a representative set of genomes. Gene size is plotted as a function  
of genome size for some representative bacteria, fungi, plants and animals. This figure illustrates a simple rule of 
thumb: in general, bigger genomes have bigger genes. Thus, accurate annotation of a larger genome requires a more 
contiguous genome assembly in order to avoid splitting genes across scaffolds. Note too that although the human 
and mouse genomes deviate from the simple linear model shown here, the trend still holds. Their unusually large 
genes are likely to be a consequence of the mature status of their annotations, which are much more complete as 
regards annotation of alternatively spliced transcripts and untranslated regions than those of most other genomes.

sequences can be catastrophic. Left unmasked, repeats 
can seed millions of spurious BLAST alignments32, pro-
ducing false evidence for gene annotations. Worse still, 
many transposon open reading frames (ORFs) look like 
true host genes to gene predictors, causing portions of 
transposon ORFs to be added as additional exons to 
gene predictions, completely corrupting the final gene 
annotations. Good repeat masking is thus crucial for 
the accurate annotation of protein-coding genes.

Evidence alignment. After repeat masking, most pipe-
lines align proteins, ESTs and RNA-seq data to the 
genome assembly. These sequences include previously 
identified transcripts and proteins from the organism 
whose genome is being annotated. Sequences from 
other organisms are also included; generally, these 
are restricted to proteins, as these retain substantial 

sequence similarity over much greater spans of evo-
lutionary time than nucleotide sequences do. In prin-
ciple, TBLASTX31,32,36 can be used to align ESTs and 
RNA-seq data from phylogenetically distant organisms 
but, owing to high computational costs, this is only 
done rarely.

UniProtKB/SwissProt 37–39 is an excellent core 
resource for protein sequences. As SwissProt is 
restricted to highly curated proteins, many users might 
want to supplement this database with the proteomes 
of related, previously annotated genomes. One easy 
way to assemble additional protein and EST data sets is 
to download sequences from related organisms using 
the NCBI taxonomy browser40,41.

EST and protein sequence data sets are often 
aligned to the genome in a two-tiered process. 
Frequently, BLAST31,32,36 and BLAT42 are used to 

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 13 | MAY 2012 | 331

© 2012 Macmillan Publishers Limited. All rights reserved

http://www.uniprot.org
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi


Box 2 | Gene prediction versus gene annotation

Although the terms ‘gene prediction’ and ‘gene annotation’ are often used as if they are synonyms, they are not. With a 
few exceptions, gene predictors find the single most likely coding sequence (CDS) of a gene and do not report untranslated 
regions (UTRs) or alternatively spliced variants. Gene prediction is therefore a somewhat misleading term. A more 
accurate description might be ‘canonical CDS prediction’.

Gene annotations, conversely, generally include UTRs, alternative splice isoforms and have attributes such as evidence 
trails. The figure shows a genome annotation and its associated evidence. Terms in parentheses are the names of 
commonly used software tools for assembling particular types of evidence. Note that the gene annotation (shown in blue) 
captures both alternatively spliced forms and the 5′ and 3′UTRs suggested by the evidence. By contrast, the gene 
prediction that is generated by SNAP (shown in green) is incorrect as regards the gene’s 5′ exons and start-of-translation 
site and, like most gene-predictors, it predicts only a single transcript with no UTR.

Gene annotation is thus a more complex task than gene prediction. A pipeline for genome annotation must not only 
deal with heterogeneous types of evidence in the form of the expressed sequence tags (ESTs), RNA-seq data, protein 
homologies and gene predictions, but it must also synthesize all of these data into coherent gene models and produce 
an output that describes its results in sufficient detail for these outputs to become suitable inputs to genome browsers 
and annotation databases.
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available evidence 
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(Exonerate)

Gene prediction
(SNAP)

Start codon Stop codon

Percent similarity 
The percent similarity of a 
sequence alignment refers to 
the percentage of positive 
scoring aligned bases or amino 
acids in a nucleotide or protein 
alignment, respectively. The 
term positive scoring refers to 
the score assigned to the 
paired nucleotides or amino 
acids by the scoring matrix 
that is used to align the 
sequences.

Percent identity 
The percent identity of a 
sequence alignment refers to 
the percentage of identical 
aligned bases or amino acids  
in a nucleotide or protein 
alignment, respectively.

identify approximate regions of homology rapidly. 
These alignments are usually filtered to identify and 
to remove marginal alignments on the basis of met-
rics such as percent similarity or percent identity. After 
filtering, the remaining data are sometimes clustered 
to identify overlapping alignments and predictions. 
Clustering has two purposes. First, it groups diverse 
computational results into a single cluster of data, all 
supporting the same gene. Second, it identifies and 
purges redundant evidence; highly expressed genes, 
for example, may be supported by hundreds if not 
thousands of identical ESTs.

The term ‘polishing’ is sometimes used to describe 
the next phase of the alignment process. After cluster-
ing, highly similar sequences identified by BLAST and 
BLAT are realigned to the target genome in order to 
obtain greater precision at exon boundaries. BLAST, for 
example, although rapid, has no model for splice sites, 
and so the edges of its sequence alignments are only 
rough approximations of exon boundaries43. For this 
reason, splice-site-aware alignment algorithms, such 
as Splign44, Spidey45, sim4 (REF. 46) and Exonerate43, 
are often used to realign matching and highly  
similar ESTs, mRNAs and proteins to the genomic 

input sequence. Although these programs take longer 
to run, they provide the annotation pipeline with 
much improved information about splice sites and 
exon boundaries.

Of all forms of evidence, RNA-seq data have the 
greatest potential to improve the accuracy of gene 
annotations, as these data provide copious evidence 
for better delimitation of exons, splice sites and alter-
natively spliced exons. However, these data can be 
difficult to use because of their large size and com-
plexity. The use of RNA-seq data currently lies at the 
cutting edge of genome annotation, and the available 
toolset is evolving quickly47. Currently, RNA-seq reads 
are usually handled in two ways. They can be assem-
bled de novo — that is, independently of the genome 
— using tools such as ABySS48, SOAPdenovo49 and 
Trinity50; the resulting transcripts are then realigned to 
the genome in the same way as ESTs. Alternatively, the 
RNA-seq data can be directly aligned to the genome 
using tools such as TopHat51, GSNAP52 or Scripture53 
followed by the assembly of alignments (rather than 
reads) into transcripts using tools such as Cufflinks54. 
See REF. 55 for guidance on the best way to use TopHat 
with Cufflinks.
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Opinions differ as to the best approach for using 
RNA-seq data, and the most promising avenue will 
probably heavily depend on both genome biology (for 
example, gene density) and the contiguity and com-
pleteness of the genome assembly. Gene density is an 
important consideration. If genes are closely spaced 
in the genome, then tools such as Cufflinks54 some-
times erroneously merge RNA-seq reads from neigh-
bouring genes. In such cases, de novo assembly of the 
RNA-seq data mitigates the problem; in fact, Trinity50 
is designed to deal with this issue. Several annotation 
pipelines are now compatible with RNA-seq data: these 
include PASA56, which uses inchworm50 outputs, and 
MAKER10, which can operate directly from Cufflinks54 
outputs or can use preassembled RNA-seq data.

Ab initio gene prediction. When gene predictors57–60 
first became available in the 1990s (see REF. 61 for 
an overview), they revolutionized genome analyses 
because they provided a fast and easy means to identify 
genes in assembled DNA sequences. These tools are 
often referred to as ab initio gene predictors because 
they use mathematical models rather than external 
evidence (such as EST and protein alignments) to 
identify genes and to determine their intron–exon 
structures.

The great advantage of ab initio gene predictors 
for annotation is that, in principle, they need no 
external evidence to identify a gene or to determine 
its intron–exon structure. However, these tools have 
practical limitations from an annotation perspective. 

For instance, most gene predictors find the single 
most likely coding sequence (CDS) and do not report 
untranslated regions (UTRs) or alternatively spliced 
transcripts (BOX 2). Training is also an issue; ab initio  
gene predictors use organism-specific genomic traits, 
such as codon frequencies and distributions of intron–
exon lengths, to distinguish genes from intergenic 
regions and to determine intron–exon structures. 
Most gene predictors come with precalculated param-
eter files that contain such information for a few classic 
genomes, such as Caenorhabditis elegans, D. mela-
nogaster, Arabidopsis thaliana, humans and mice. 
However, unless your genome is very closely related 
to an organism for which precompiled parameter files 
are available, the gene predictor needs to be trained on 
the genome that is under study, as even closely related 
organisms can differ with respect to intron lengths, 
codon usage and GC content62.

Given enough training data, the gene-level sensi-
tivity of ab initio tools can approach 100%63,64 (BOX 4). 
However, the accuracy of the predicted intron–exon 
structures is usually much lower, ~60–70%. It is also 
important to understand that large numbers of pre-
existing, high-quality gene models and near base-
perfect genome assemblies are usually required to 
produce highly accurate gene predictions63,65; such data 
sets are rarely available for newly sequenced genomes.

In principle, alignments of ESTs, RNA-seq and 
protein sequences to a genome can be used to train 
gene predictors even in the absence of pre-existing 
reference gene models. Although many popular gene 
predictors can be trained in this way, doing so often 
requires the user to have some basic programming 
skills. The MAKER pipeline provides a simplified 
process for training the predictors Augustus66,67 and 
SNAP62 using the EST, protein and mRNA-seq align-
ments that MAKER has produced10,56. An alternative is 
to use GeneMark-ES68,69: a self-training, but sometimes 
less-accurate, algorithm69,70. 

Evidence-driven gene prediction. In recent years, the 
distinction between ab initio prediction and gene 
annotation has been blurred. Many ab initio tools, such 
as TwinScan71, FGENESH72, Augustus, Gnomon73, 
GAZE74 and SNAP, can use external evidence to 
improve the accuracy of their predictions. ESTs, for 
example, can be used to identify exon boundaries 
unambiguously. This process is often referred to as 
evidence-driven (in contrast to ab initio) gene pre-
diction. Evidence-driven gene prediction has great 
potential to improve the quality of gene prediction in 
newly sequenced genomes, but in practice it can be 
difficult to use. ESTs and proteins must first be aligned 
to the genome; RNA-seq data must be aligned too, if 
they are available. Splice sites must then be identified, 
and the assembled evidence must be post-processed 
before a synopsis of these data can be passed to the 
gene finder. In practice, this is a lot of work, requir-
ing a lot of specialized software. In fact, it is one of 
the main obstacles that genome annotation pipelines 
attempt to overcome.

Box 3 | Non-coding RNAs

Non-coding RNA (ncRNA) annotation is still in its infancy compared with 
protein-coding gene annotation, but it is advancing rapidly. The heterogeneity and 
poorly conserved nature of many ncRNA genes present major challenges for 
annotation pipelines. Unlike protein-encoding genes, ncRNAs are usually not 
well-conserved at the primary sequence level; even when they are, nucleotide 
homologies are not as easily detected as protein homologies, which limits the power 
of evidence-based approaches.

One common approach is to identify ncRNA genes using conserved secondary 
structures and motifs. Established examples of these types of tools include 
tRNAscan-SE118 and Snoscan119. MicroRNA (miRNA) gene finders are also 
available120. A more general approach is first to align nucleotide sequences — 
genomic, RNA-seq and ESTs — from closely related organisms to the target genome 
and then search these for signs of conserved secondary structures. This is a complex 
process, however, and can require substantial computational resources; qRNA is  
one such tool121, another is StemLoc122. Be aware that these tools have high 
false-positive rates. RNA sequencing is also greatly aiding ncRNA identification.  
For example, miRNAs can be directly identified using specialized RNA preps and 
sequencing protocols123,124. Even with such sophisticated tools and techniques, 
distinguishing between bona fide ncRNA genes, spurious transcription and poorly 
conserved protein-encoding genes that produce small peptides remains difficult, 
especially in the cases of long intergenic non-coding RNAs (lincRNAs)125,126 and 
expressed pseudogenes127,128.

Another approach is to annotate possible ncRNA genes liberally and then use 
Infernal129 and Rfam114 to triage and classify these genes based on primary and 
secondary sequence similarities. Even with these resources, however, many ncRNAs 
will remain unclassifiable. Currently, ncRNA annotation is cutting edge, and those 
using ncRNA annotations should bear in mind that ncRNA annotation accuracies are 
generally much lower than those of their protein-coding counterparts.
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Box 4 | How gene prediction and gene annotation accuracies are calculated

Three commonly used measures of gene-finder performance are sensitivity, specificity and accuracy130. Each is 
measured relative to some standard, usually a reference annotation. Sensitivity (SN) is the fraction of the reference 
feature that is predicted by the gene predictor. To be more precise, SN = TP / (TP + FN), where TP is true positives and 
FN is false negatives. By contrast, specificity (SP) is the fraction of the prediction overlapping the reference feature: 
for example, SP = TP / (TP + FP), where FP is false positives. Note that the definition of SP given here is the one that is 
commonly used by the gene-finding community130 but, more correctly, this measure is positive predictive value (PPV) 
or precision.

Both measures can be calculated for any portion of a gene model, such as genes, transcripts or exons. At the 
nucleotide level, TP is the number of exonic nucleotides in the reference gene model, FN is the number of these that 
are not included in the prediction, and FP is the number of exonic nucleotides in the prediction that are not found in 
the reference gene model. At the exon level, SN is the number of correct exons in the prediction divided by the 
number of exons in the reference gene model, and SP is the number of correct exons in the prediction divided by  
the number of exons in the prediction130. So-called ‘site measures’ are also used: for example, the SN and SP for 
predicting features such as start codons or splice donors. SN and SP are often combined into a single measure called 
accuracy (AC): for example, AC = (SN + SP) / 2 (see REFS 130–132 for reviews of commonly used accuracy measures).

Panel A of the figure shows SN, SP and AC for two different gene models. The reference model is shown in blue, and 
the two different predictions at the same locus are shown in red. The table on the right gives the values of SN, SP  
and AC for the two predictions. For the purposes of calculation, exons 1, 2 and 3 of the reference gene model and  
of prediction 1 have identical start and end coordinates and are 100, 50 and 50 nucleotides long, respectively. In 
prediction 2, exons are 75 and 50 nucleotides long, respectively, and the start coordinate of its first exon is identical 
to that of the reference, but its end is not; its second exon is identical to the third exon in the reference.

Numbers in parentheses are the values at the exon level; the others are nucleotide-level values. Note that the values 
for prediction 2 are lower at the exon level than they are at the nucleotide level. This is because exon-level 
calculations have an ‘all-or-nothing’ aspect to them: that is, a model in which the exons each differ by a single 
nucleotide from the reference will have nucleotide-level SN, SP and AC values near 1; its exon-level SN, SP and AC 
values, however, will all be 0.

With a few modifications, SN, SP and AC can also be used to compare two annotations to one another. This is the 
approach taken by the Sequence Ontology Project to calculate annotation edit distance (AED), which can be used to 
measure the congruence between an annotation and its supporting evidence96. AED is calculated in the same manner 
as SN and SP, but in place of a reference gene model, the coordinates of the union of the aligned evidence (see panel 
Ba) are used instead: AED = 1 – AC, where AC = (SN + SP) / 2.

An AED of 0 indicates that the annotation is in perfect agreement with its evidence, whereas an AED of 1  
indicates a complete lack of evidence support for the annotation. More information regarding AED can be found  
in REF. 96.

Panel B illustrates how AED is used. Panel Ba shows the protein, expressed sequence tag (EST) and ab initio gene 
predictions that are produced during the computation phase of the annotation process. Panel Bb shows two 
hypothetical annotations based on this evidence. Solid portions of boxes in panel Bb delimit coding sequence; note 
that the two annotations differ at their 3′ untranslated regions (UTRs) as well as their coding-exon coordinates.

The table on the right in panel Bb shows how nucleotide-level AED values can be used to summarize the goodness 
of fit of an annotation to its overlapping evidence. Annotation 1 has the lower AED (of 0.2), meaning that it is a better 
fit to the evidence than annotation 2 (with an AED of 0.6) is; thus, bringing annotation 1 into perfect synchrony with 
the evidence would require fewer manual editing operations than would be required for annotation 2.
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Unsupervised learning 
methods 
Refers to methods that can  
be trained using unlabelled 
data. One example is a gene 
prediction algorithm that can 
be trained without a reference 
set of correct gene models; 
instead, the algorithm is 
trained using a collection of 
annotations, not all of which 
might be correct.

Step two: the annotation phase
The ultimate goal of annotation efforts is to obtain a 
synthesis of alignment-based evidence with ab initio 
gene predictions to obtain a final set of gene annota-
tions. Traditionally, this was done manually; human 
genome annotators would review the evidence for each 
gene in order to decide on their intron–exon struc-
tures75. Although this results in high-quality annota-
tion76,77, it is so labour-intensive that, for budgetary 
reasons, smaller genome projects are increasingly 
being forced to rely on automated annotations.

There are almost as many strategies for creating 
automated annotations as there are annotation pipe-
lines, but the common theme is to use evidence to 
improve the accuracy of gene models, usually through 
some combination of pre- and post-processing of the 
gene predictions. FIGURE 2 and TABLE 1 provide an over-
view of some of the more commonly used approaches.

Automated annotation. The simplest form of auto-
mated annotation is to run a battery of different gene 
finders on the genome and then to use a ‘chooser 
algorithm’ (also known as a ‘combiner’) to select the 
single prediction whose intron–exon structure best 
represents the consensus of the models from among 
the overlapping predictions that define each putative 
gene locus. This is the process used by JIGSAW78. 
EVidenceModeler (EVM)79 and GLEAN80 (and its 
successor, Evigan81) go one step further, attempting to 
choose the best possible set of exons automatically and 
to combine them to produce annotations. This is done 
by estimating the types and frequencies of errors that 
are made by each source of gene evidence and then 
choosing combinations of evidence that minimize such 
errors. Like ab initio gene predictors, JIGSAW must be 
retrained for each new genome, and so it requires a 
source of known gene models that were not already 
used to train the underlying ab initio gene predictors. 
EVM allows the user to set expected evidence error rates 
manually or to learn them from a training set. By con-
trast, GLEAN and Evigan use an unsupervised learning  
method to estimate a joint error model, and thus they 
require no additional training. In a recent gene pre-
diction competition64, the combiners nearly always 
improved on the underlying gene prediction models, 
and JIGSAW, EVM or Evigan performed similarly.

Another popular approach is to feed the align-
ment evidence to the gene predictors at run time (that  
is, evidence-driven prediction) to improve the accuracy 
of the prediction process — a chooser can then be used 
to identify the most representative prediction. The pre-
dictions can also be processed — before or after running 
the chooser — to attain still greater accuracies by hav-
ing the annotation pipeline add UTRs as suggested by  
the RNA-seq and EST data. This is the process used  
by PASA56,82, Gnomon73 and MAKER10. The evidence 
can also be used to inform the choices made by the 
chooser algorithm — by picking the post-processed 
gene model that is most consistent with the protein, EST 
and RNA-seq alignments83; EVM, MAKER and PASA 
all provide methods for doing so (TABLE 1; FIG. 2).

So which approach should you use? Probably the 
best way to think about the problem is in terms of effort 
versus accuracy. Simply running a single ab initio gene 
finder over even a very large genome can be done in a 
few hours of central processing unit (CPU) time. By 
contrast, a full run by an annotation pipeline such as 
MAKER or PASA can take weeks, but because these 
pipelines align evidence to the genome, their outputs 
provide starting points for annotation curation and 
downstream analyses, such as differential expres-
sion analyses using RNA-seq data. Another factor to 
consider is the phylogenetic relationship of the study 
genome to other annotated genomes. If it is the first of 
its taxonomic order or family to be annotated, it would 
definitely be preferable to use a pipeline that can use 
the full repertory of external evidence, especially RNA-
seq data, to inform its gene annotations; not doing so 
will almost certainly result in low-quality annotations80.

Visualizing the annotation data 
Output data: the importance of using a fully docu-
mented format. The outputs of a genome annota-
tion pipeline will include the transcript and protein 
sequences of every annotation, which are almost 
always provided in FASTA format84. Although FASTA 
files are useful, they only enable a small subset of pos-
sible downstream analyses. Visualizing annotations 
in a genome browser and creating a genome database 
requires a more descriptive output file. At a bare mini-
mum, output files need to describe the intron–exon 
structures of each annotation, their start and stop 
codons, UTRs and alternative transcripts. Ideally, 
these outputs should go one step further and should 
include information about the sequence alignments 
and gene predictions that support each gene model.

Four commonly used formats for describing annota-
tions are the GenBank, GFF3, GTF and EMBL formats. 
Using a fully documented format is important for three 
reasons. First, doing so will remove the trouble of writ-
ing software to convert outputs into a format that other 
tools can use. Second, common formats, especially 
those such as GenBank and GFF3, which use controlled 
vocabularies and ontologies to define their descriptive 
terminologies, guarantee ‘interoperability’ between 
analysis tools. Third, unless a common vocabulary is 
used to describe gene models85, comparative genomic 
analyses can be frustratingly difficult or downright 
impossible. In response to these needs, the Generic 
Model Organism Database (GMOD) project commu-
nity has developed a series of standards and tools for 
description, analyses, visualization and redistribution 
of genome annotations, all of which use the GFF3 file 
format as inputs and outputs. Leveraging GMOD tools 
and GFF3 substantially simplifies curation, analysis, 
publication and management of genome annotations.

GMOD. The GMOD project is an umbrella organiza-
tion that provides a large suite of tools for creating, 
managing and using genome annotations, includ-
ing the analysis, visualization and redistribution 
of annotation data. Users who have browsed the 
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Post process gene predictions to 
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transcripts based on evidence
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Figure 2 | Three basic approaches to genome annotation and some common variations. Approaches are 
compared on the basis of relative time, effort and the degree to which they rely on external evidence, as opposed to  
ab initio gene models. The y axis shows increasing time and effort; the x axis shows increasing use of external evidence 
and, consequently, increasing accuracy and completeness of the resulting gene models. The type of final product 
produced by each kind of pipeline is shown in the dark blue boxes. Relative positions in the figure are for summary 
purposes only and are not based on precisely computed values. See TABLE 1 for a list of commonly used software 
components. CDS, coding sequence; EST, expressed sequence tag; RNA-seq, RNA sequencing; UTR, untranslated region.

Saccharomyces Genome Database, WormBase, FlyBase, 
The Arabidopsis Information Resource (TAIR) or the 
University of California Santa Cruz (UCSC) Genome 
Browser will have used GMOD tools. GMOD tools also 
aid in creating an online genome database. The key is 
having annotations and their associated evidence in 
GFF3 format, which is useable by GMOD tools. Users 
can directly visualize these files using GBROWSE86 
and JBROWSE87 to produce views of their data just like 
those offered at WormBase and UCSC. They can also 
directly edit the gene models using the Apollo genome 
browser and JBROWSE. BioPerl88 also provides a set 
of database tools for loading GFF3 files into a ready-
made Chado89 database schema with which an online 
genome database can be rapidly created that contains  
a genome and its annotations in a ‘browse-able’ format.

Quality control
Incorrect annotations poison every experiment that 
makes use of them. Worse still, the poison spreads 
because incorrect annotations from one organism 
are often unknowingly used by other projects to help 
annotate their own genomes. Standard practices for 

genome annotation have been proposed for bacterial90, 
viral91 and eukaryotic genomes92, but even when fol-
lowed, quality control remains an issue. Even the best 
gene predictors and genome annotation pipelines 
rarely exceed accuracies of 80% at the exon level63, 
meaning that most gene annotations contain at least 
one mis-annotated exon. Given these facts, assessing 
how accurately a genome is annotated is an important 
part of any project.

Over the years, there have been various contests 
aimed at assessing gene prediction accuracy 63,65 
(BOX 4). These contests have played an important part 
in improving the power and accuracy of gene predic-
tion. However, less progress has been made regarding 
genome annotations64. The heart of the problem is the 
absence of reference data sets with which to obtain 
accuracy estimates. The first generation of genome 
projects — Saccharomyces cerevisae, C. elegans and 
D. melanogaster, for instance — all had decades of work 
to draw on when training and measuring the accuracy 
of gene predictors and annotation pipelines. However, 
no such data set exists for most of the organisms 
being sequenced today. Moreover, just because a gene 
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Table 1 | Five basic categories of annotation software and some selected examples 

Software Description Refs

Ab initio and evidence-drivable gene predictors

Augustus Accepts expressed sequence tag (EST)-based and protein-based evidence hints.  
Highly accurate

66,67

mGene Support vector machine (SVM)-based discriminative gene predictor. Directly predicts 5′ 
and 3′ untranslated regions (UTRs) and poly(A) sites

133

SNAP Accepts EST and protein-based evidence hints. Easily trained 62

FGENESH Training files are constructed by SoftBerry and supplied to users 72

Geneid First published in 1992 and revised in 2000. Accepts external hints from EST and 
protein-based evidence

134

Genemark A self-training gene finder 69,70

Twinscan Extension of the popular Genscan algorithm that can use homology between two 
genomes to guide gene prediction

71

GAZE Highly configurable gene predictor 74

GenomeScan Extension of the popular Genscan algorithm that can use BLASTX searches to guide 
gene prediction

135

Conrad Discriminative gene predictor that uses conditional random fields (CRFs) 136

Contrast Discriminative gene predictor that uses both SVMs and CRFs 137

CRAIG Discriminative gene predictor that uses CRFs 138

Gnomon Hidden Markov model (HMM) tool based on Genscan that uses EST and protein 
alignments to guide gene prediction

73

GeneSeqer A tool for identifying potential exon–intron structure in precursor mRNAs (pre-mRNAs) 
by splice site prediction and spliced alignment

139

EST, protein and RNA-seq aligners and assemblers

BLAST Suite of rapid database search tools that uses Karlin–Altschul statistics 31–33

BLAT Faster than BLAST but has fewer features 42

Splign Splice-aware tool designed to align cDNA to genomic sequence 44

Spidey mRNA-to-DNA alignment tool that is designed to account for possible paralogous 
alignments

45

Prosplign Global alignment tool that uses BLAST hits to align in a splice-site- and paralogy-aware 
manner

140

sim4 Splice-aware cDNA-to-DNA alignment tool 46

Exonerate Splice-site-aware alignment algorithm that can align both protein and EST sequences to 
a genome

43

Cufflinks Extension to TopHat. Uses TopHat outputs to create transcript models 54

Trinity High-quality de novo transcriptome assembler 50

MapSplice Spliced aligner that does not use a model of canonical splice junction 141

TopHat Transcriptome aligner that aligns RNA sequencing (RNA-seq) reads to a reference 
genome using Bowtie to identify splice sites

51

GSNAP A fast short-read assembler 52

Choosers and combiners

JIGSAW Combines evidence from alignment and ab initio gene prediction tools to produce a 
consensus gene model

78

EVidenceModeler Produces a consensus gene model by combining evidence from protein and transcript 
alignments together with ab initio predictions using weights for both abundance and the 
sources of the evidence

79

GLEAN Tool for creating consensus gene lists by integrating gene evidence through latent  
class analysis

80

Evigan Probabilistic evidence combiner that use a Bayeisan network to weigh and integrate 
evidence from ab initio predictors, alignments and expression data to produce a 
consensus gene model

81
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Table 1 (cont.) | Five basic categories of annotation software and some selected examples 

Software Description Refs

Genome annotation pipelines

PASA Annotation pipeline that aligns EST and protein sequences to the genome and produces 
evidence-driven consensus gene models

56,82

MAKER Annotation pipeline that uses BLAST and exonerate to align protein and EST sequences. 
Also accepts features from RNA-seq alignment tools (such as TopHat). Massively parallel

10,83

NCBI The genome annotation pipeline from the US National Center for Biotechnology 
Information (NCBI). Uses BLAST alignments together with predictions from Gnomon and 
GenomeScan to produce gene models

142

Ensembl Ensembl’s genome annotation pipeline. Uses species-specific and cross-species alignments 
to build gene models. Also annotates non-coding RNAs

107

Genome browsers for curation

Artemis Java-based genome browser for feature viewing and annotation. Can use binary alignment 
map (BAM) files as input

99

Apollo Java-based genome browser that allows the user to create and edit gene models and write 
their edits to a remote database

97

JBROWSE JavaScript- and HTML-based genome browser that can be embedded into wikis for 
community work. Excellent for Web-based use

87

IGV Genome browser that supports BAM files and expression data 143

These tools are widely used both as standalone applications and as modular components of genome annotation pipelines. See 
FIG. 2 for a schematic of the roles of each class of tool in genome annotation.

predictor does well on one genome is no guarantee of a 
good performance on the next83. Assessing annotation 
quality in the absence of reference genome annotations is  
a difficult problem. Experimental verification is one 
solution, but few projects have the resources to carry 
this out on a large scale.

Approaches for assessing annotation quality. One 
simple approach for obtaining a rough indication of  
annotation quality is to quantify the percentage  
of annotations that encode proteins with known 
domains using tools such as InterProScan93 and Pfam94 
or tools such as MAKER, which provides an automated 
means for carrying out such analyses83. Although rela-
tive numbers of domains vary between organisms and 
the expansion and contraction of particular gene fami-
lies have a well-established role in organismal evolu-
tion, among the eukaryotes, the overall percentage of 
proteins that encode a domain of any sort is reasonably 
constant83. The domain content of the human, D. mel-
anogaster, C. elegans, A. thaliana and S. cerevisiae pro-
teomes varies between 57% and 75%95. Poorly trained 
gene finders do not perform nearly this well — 5% to 
25% is typical. Thus, a eukaryotic proteome with a low 
percentage of domains is a warning sign that it could 
be poorly annotated83.

Although domain content provides a rough estimate 
of overall annotation quality, it provides little guidance 
when trying to judge the accuracy of a given annota-
tion. One approach towards solving this problem is to 
ask whether the protein, EST and RNA-seq evidence 
support or contradict the annotated intron–exon 
structure of the gene. This is fairly straightforward to 
assess by eye, but performing this task in an automated 
fashion requires a computable metric. In response, the 

Sequence Ontology Project85 has developed several 
metrics for quality control of genome annotations96. 
Annotation edit distance (AED), for example, measures 
how congruent each annotation is with its overlapping 
evidence (BOX 4). AED thus provides a means to identify 
problematic annotations automatically and to prioritize 
them for manual curation. AED scores can also be used 
to measure changes to annotations between annotation 
runs. The MAKER2 genome annotation pipeline83 pro-
vides some useful tools for automatically calculating 
AED.

Of course, identifying inaccurate annotations is only 
half of the problem; errors also need to be corrected. 
The most direct approach to fixing an erroneous anno-
tation is to edit its intron–exon coordinates manually. 
The Apollo97, Argo98 and Artemis99 browsers are widely 
used for this purpose. Gene models can be graphically 
revised using a series of ‘drag-and-drops’ and mouse 
clicks, and the resulting edits are written back to either 
files or to a remote database connection89.

Annotation jamborees. Many genome projects choose 
to manually review and edit their annotation data sets. 
Although this process is time- and resource-intensive, 
it provides opportunities for community building, 
education and training. 

Annotation jamborees (a term that was coined by 
the D. melanogaster community to describe the first 
such gathering100) provide a ready means for man-
ual curation and analysis of the data and for putting 
together a genome paper. The key to hosting a success-
ful jamboree is infrastructure. At a minimum, attend-
ees must be able to search the annotated proteins and 
transcripts and to view the annotations in a genome 
browser. Searches can easily be handled by setting up a 
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BLAST database server coupled with a graphical user 
interface (GUI) such as a Web browser. The WWW 
BLAST server package101 provides an easy means to do 
so. GBrowse86,102 and JBrowse87 can also easily be con-
figured to allow remote users to view the annotated 
genome, as can the Apollo genome browser, which also 
provides a means to edit incorrect annotations. As all of 
these resources can be set up and configured remotely, 
it is now possible to support a distributed jamboree, 
in which the community collaborates via the Internet. 
This model recently proved to be successful for the ant 
genome community, which organized a distributed 
jamboree in which investigators and students collabo-
rated to curate and analyse three different ant genomes 
quickly, all in a distributed manner103–106.

Making data publicly available 
Successful genome annotation projects do not just end 
with the publication of a paper; they also produce pub-
licly available annotations. Genome annotations fuel 
the bench work and computational analyses that con-
stitute the day-to-day operations of molecular biology 
and bioinformatics laboratories worldwide. They also 
provide an essential resource for other genome anno-
tation projects; the transcripts and proteins produced 
by one annotation project will probably be used to help 
annotate other genomes. There are three basic routes 
to making annotations publicly available: you can build 
your own genome database and place it online; you can 
submit your annotations to GenBank and Ensembl; 
or you can submit them to any of a growing number 
of theme-based genome databases. We recommend  
taking all three routes.

Submitting annotations to public databases. One way to 
make annotations publicly available is to submit them 
to GenBank. Parties working on vertebrate genomes 
are also encouraged to contact Ensembl, which con-
tinues to incorporate new species at the rate of 5–10 
per year in order to create a comprehensive annotation 
resource for vertebrate genomes, all of which are anno-
tated by its gene build pipeline107. Both GenBank and 
Ensembl have much to offer to smaller genome pro-
jects, including powerful data-marts that allow users to 
browse and download data. Ensembl and GenBank also 
automatically handle the heavy lifting that is involved 
in relating gene models to those of other organisms and 
identifying homologues, paralogues and orthologues. 
They also provide an easy means to search and browse 
data; in short, they integrate a data set into the larger 
landscape of genomics and genome annotations. Best 
of all, the entire process is free, and submission to these 
sites in no way abridges the rights of the generators of 
the data to host and maintain their own genome data-
base. For the research communities of most organisms, 
members will prefer to visit the specialized genome 
database for that organism, whereas the larger biologi-
cal community will tend to access the data through 
GenBank and Ensembl. In addition to these large 
sites, intermediate-sized projects that host, manage 
and maintain sets of annotated genomes that are all 

related by a common theme are gaining in popularity. 
Examples include BeeBase103, Gramene108, PlantGDB109, 
Phytozome110 and VectorBase111.

Updating annotations. Many genomes were annotated 
so long ago that the existing annotations could be dra-
matically improved using modern tools and data sets 
such as RNA-seq. In many cases, improved assemblies 
are possible as well. The question then becomes how 
to merge, update and improve the existing annotations 
and, at the same time, to document the process. Like 
annotation quality control, this is a thorny problem 
that until recently has garnered little attention, and 
few published tools yet exist to automate the pro-
cess. Among existing tools, GLEAN and PASA can be 
used to report differences between pre-existing gene 
models and newly created ones. Ensembl has a proce-
dure to merge annotation data sets to produce a con-
sensus, and PASA has one for updating annotations 
with RNA-seq data. The MAKER annotation pipeline 
provides an automated toolkit with all of these func-
tionalities and can revise, update and merge existing 
annotation data sets, as well as map them forwards to 
new assemblies10,83.

GenBank provides two avenues for redistributing 
the results of updates and re-annotation of genomes. 
If the group that is updating the annotations includes 
the original authors, the update can simply be submit-
ted; if not, there are two routes for submission. If the 
work involves substantial improvements to the original 
assembly, the parties producing them can submit the 
new annotations to GenBank as primary authors; if not 
— that is, if the revisions merely improve the original 
annotations — those producing them can submit their 
work through the third party submission channel. 
Ensembl also allows submission of such data, although 
the process is less formal, and interested parties  
should contact Ensembl directly. 

Conclusions
In some ways, cheap sequencing has complicated 
genome annotation. As we have explained, the frag-
mented assemblies and exotic nature of many of the cur-
rent genome-sequencing projects are part of the reason  
that this is so, but it is the ever-widening scope of 
annotation that is presenting the greatest challenges. 
Genome annotation has moved beyond merely identi-
fying protein-coding genes to include an ever-greater 
emphasis on the annotation of transposons, regula-
tory regions, pseudogenes and ncRNA genes112–115. 
Annotation quality control and management are also 
increasingly becoming bottlenecks. As long as tools and 
sequencing technologies continue to develop, periodic 
updates to every genome’s annotations will remain nec-
essary. Those undertaking genome annotation projects 
need to reflect on this fact. Like parenthood, annota-
tion responsibilities do not end with birth. Incorrect 
and incomplete annotations poison every experi-
ment that makes use of them. In today’s genomics- 
driven world, providing accurate and up-to-date  
annotations is simply a must.

Data-mart 
Provides users with online 
access to the contents of a 
data warehouse through 
user-configurable queries.  
A data-mart allows users to 
download data that meet their 
particular needs: for example, 
all transcripts from all 
annotated genes on human 
chromosome 3.
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FURTHER INFORMATION
Mark Yandell’s homepage: http://www.yandell-lab.org
ABySS: http://www.bcgsc.ca/platform/bioinfo/software/abyss  
Apollo: http://apollo.berkeleybop.org/current/index.html 
The Arabidopsis Information Resource (TAIR): http://www.
arabidopsis.org
Argo: http://www.broadinstitute.org/annotation/argo 
Artemis: http://www.sanger.ac.uk/resources/software/artemis 
Augustus: http://bioinf.uni-greifswald.de/augustus 
BeeBase: http://hymenopteragenome.org/beebase 
BioPerl: http://www.bioperl.org/wiki/Main_Page 
BLAST: blast.ncbi.nlm.nih.gov/Blast.cgi 
The Brent Lab software (for TwinScan): http://mblab.wustl.
edu/software.html 
CEGMA: http://korflab.ucdavis.edu/Datasets/cegma 
CHADO: http://gmod.org/wiki/Chado_-_Getting_Started 
Crossmatch: http://www.incogen.com/public_documents/
vibe/details/crossmatch.html 
Cufflinks: http://cufflinks.cbcb.umd.edu 
EMBL: http://www.ebi.ac.uk/help/formats.html#EMBL 
Ensembl: http://www.ensembl.org/index.html 
Ensembl Genome Annotation: http://www.ensembl.org/info/
docs/genebuild/genome_annotation.html 
EVidenceModeler: http://evidencemodeler.sourceforge.net 
Evigan: http://www.seas.upenn.edu/~strctlrn/evigan/evigan.html 
Exonerate: http://www.genome.iastate.edu/bioinfo/resources/
manuals/exonerate  
FlyBase: http://flybase.org  

GAZE: http://www.sanger.ac.uk/resources/software/gaze 
GBrowse: http://gmod.org/wiki/GBrowse 
GenBank homepage: http://www.ncbi.nlm.nih.gov/genbank 
GenBank submission guide for eukaryotic genomes: http://
www.ncbi.nlm.nih.gov/genbank/eukaryotic_genome_
submission
GeneMark-ES: http://exon.gatech.edu 
GFF3: http://www.sequenceontology.org/gff3.shtml 
GLEAN: http://sourceforge.net/projects/glean-gene 
Generic Model Organism Database (GMOD) overview: http://
gmod.org/wiki/Overview 
Gnomon: http://www.ncbi.nlm.nih.gov/genome/guide/
gnomon.shtml 
GSNAP: http://research-pub.gene.com/gmap 
Gramene: http://www.gramene.org/genome_browser/index.
html 
GTF: http://mblab.wustl.edu/GTF22.html 
Infernal: http://infernal.janelia.org 
JBrowse: http://jbrowse.org 
JIGSAW: http://www.cbcb.umd.edu/software/jigsaw 
MAKER: http://www.yandell-lab.org/software/maker.html 
Nature Reviews Genetics article series on Study designs: 
http://www.nature.com/nrg/series/studydesigns/index.html 
NCBI taxonomy browser: http://www.ncbi.nlm.nih.gov/
Taxonomy/Browser/wwwtax.cgi 
PASA: http://pasa.sourceforge.net 
Phytozome: http://www.phytozome.net  

 
PlantGDB: www.plantgdb.org 
qRNA: http://selab.janelia.org/software/#qrna 
RepeatMasker: http://www.repeatmasker.org 
Rfam: http://rfam.sanger.ac.uk 
Saccharomyces Genome Database: http://www.yeastgenome.org 
Scripture: http://www.broadinstitute.org/software/scripture 
Sequence Ontology Project: http://www.sequenceontology.
org/index.html 
sim4: http://globin.bx.psu.edu/html/docs/sim4.html 
Spidey: http://www.ncbi.nlm.nih.gov/spidey/spideydoc.html 
Splign: http://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi 
SNAP: http://homepage.mac.com/iankorf 
Snoscan: http://lowelab.ucsc.edu/snoscan 
SOAPdenovo: http://soap.genomics.org.cn/soapdenovo.html 
SoftBerry: http://www.softberry.com
SoftBerry products (for FGENESH): http://linux1.softberry.
com/berry.phtml?topic=products 
Stemloc: http://biowiki.org/StemLoc 
TopHat: http://tophat.cbcb.umd.edu/index.html 
Trinity: http://trinityrnaseq.sourceforge.net 
tRNAscan-SE: http://lowelab.ucsc.edu/tRNAscan-SE 
UniProtKB/SwissProt: http://www.uniprot.org 
University of California Santa Cruz (UCSC) Genome Browser: 
http://genome.ucsc.edu 
VectorBase: http://www.vectorbase.org 
WormBase: http://www.wormbase.org 
ALL LINKS ARE ACTIVE IN THE ONLINE PDF
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