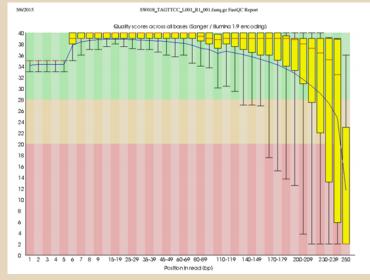

Assembly of the *Ariolimax dolicophallus* genome with Discovar *de novo*

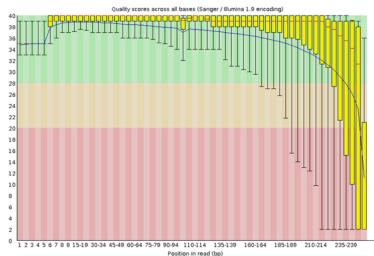
Chris Eisenhart, Robert Calef, Natasha Dudek, Gepoliano Chaves

Discovar de novo

- Developed by the Broad Institute in 2014
- Specific wetlab workflow expected
- Illumina libraries only
 - PCR free
 - Insert size ~450bp
 - Read length >250
 - 60X coverage

Preprocessing reads


Preprocessing: adapter removal


Quality scores across samples

SW018_TAGTTCC_L001_R1_001.fastq FastQC Report a) Pre-skewer

SW018_noAdap_R1.fastq

b) Post-skewer

Preprocessing: adapter removal

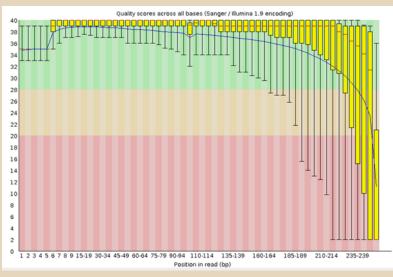

Quality scores across samples

SW018_TAGTTCC_L001_R1_001.fastq.gz FastQC Report a) Pre-skewer

FAIL Overrepresented sequences				
Sequence	Count	Percentage	Possible Source	
MATCOGAMAGACACOTCTGAACTCCAGTCACTAGTTCCATCTGTAT	60255	1.506375	TruSeq Adapter, Index 10 (97% over 38bp)	

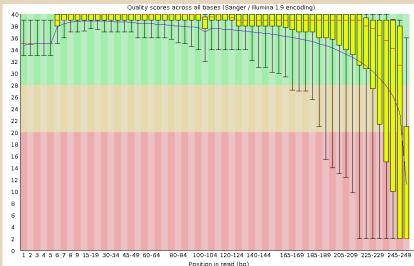
SW018_noAdap_R1.fastq

b) Post-skewer



Preprocessing: PCR-duplicate removal

Quality scores across samples

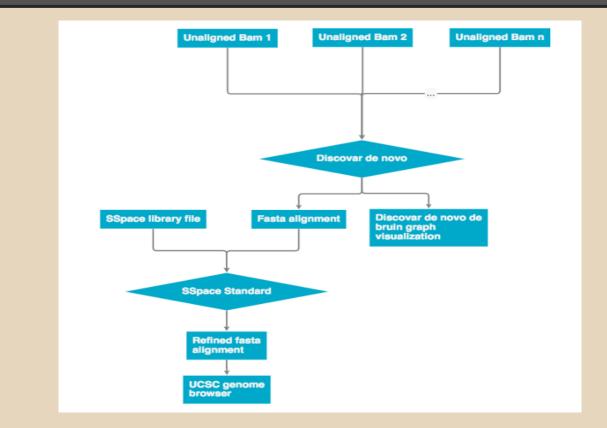

SW018_noAdap_R1.fastq

a) Pre-fastUniq

SW018_noAdap_noDupR1.fastq

b) Post-fastUniq

Preprocessing: PCR-duplicate removal


Dataset	# Reads before fastUniq	# Reads after fastUniq	% duplicates
SW018	61,132,697	56,931,153	6.87%
SW019	79,215,987	75,081,065	5.21%

Picard tools: convert to BAM/SAM

After adapter and duplicate removal, reads are converted to BAM files

 Overlapping and non-overlapping reads in BAM format are used as input for Discovar de novo

Discovar de novo

- Input syntax:
- -Last time: frac option for downsampling, no white space
- -This time: threads and memory

DiscovarDeNovo READS = sample : H19 :: UCSF_SW019_noAdap_noDup.bam + sample : M19 :: SW019_MiSeq_adapterTrimmed_dupRemoved.bam + sample:tag :: BS_tag_noAdap_noDup.bam_NUM_THREADS=22_MAX_MEM_GB=260_MEMORY_CHECK=True OUT_DIR=fullMergableAssembly/

Thread control: NUM_THREADS -Available since October 2014 -Hyperthreading: Disable, or set threads to # of physical cores

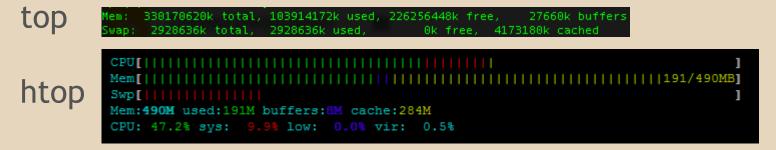
DiscovarDeNovo READS = sample : H19 :: UCSF_SW019_noAdap_noDup.bam +
sample : M19 :: SW019_MiSeq_adapterTrimmed_dupRemoved.bam + sample:tag ::
BS_tag_noAdap_noDup.bam NUM THREADS=22 MAX_MEM_GB=260 MEMORY_CHECK=True
OUT_DIR=fullMergableAssembly/

- Memory control: MAX_MEM_GB -Available since December 2014
- -Throttles maximum memory usage, not airtight

DiscovarDeNovo READS = sample : H19 :: UCSF_SW019_noAdap_noDup.bam +
sample : M19 :: SW019_MiSeq_adapterTrimmed_dupRemoved.bam + sample:tag ::
BS_tag_noAdap_noDup.bam_NUM_THREADS=22 MAX_MEM_GB=260_MEMORY_CHECK=True
OUT_DIR=fullMergableAssembly/

Memory control: MEMORY_CHECK -Available since February 2015 -Sequential malloc's to determine available memory

DiscovarDeNovo READS = sample : H19 :: UCSF_SW019_noAdap_noDup.bam +
sample : M19 :: SW019_MiSeq_adapterTrimmed_dupRemoved.bam + sample:tag ::
BS_tag_noAdap_noDup.bam NUM_THREADS=22 MAX_MEM_GB=260 MEMORY CHECK=True
OUT_DIR=fullMergableAssembly/


Memory control: malloc parallelization -To avoid blocking, have multiple malloc heaps -Not always default:

export MALLOC_PER_THREAD=1 bash setenv MALLOC PER THREAD 1 csh

DiscovarDeNovo READS = sample : H19 :: UCSF_SW019_noAdap_noDup.bam + sample : M19 :: SW019_MiSeq_adapterTrimmed_dupRemoved.bam + sample:tag :: BS_tag_noAdap_noDup.bam_NUM_THREADS=22_MAX_MEM_GB=260_MEMORY_CHECK=True OUT_DIR=fullMergableAssembly/

Memory control: top vs htop

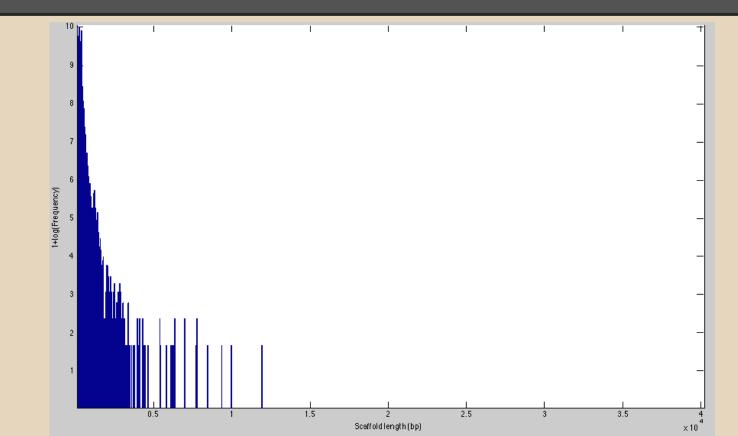
-Linux task managers, must download or compile htop

-paging cache shown in yellow

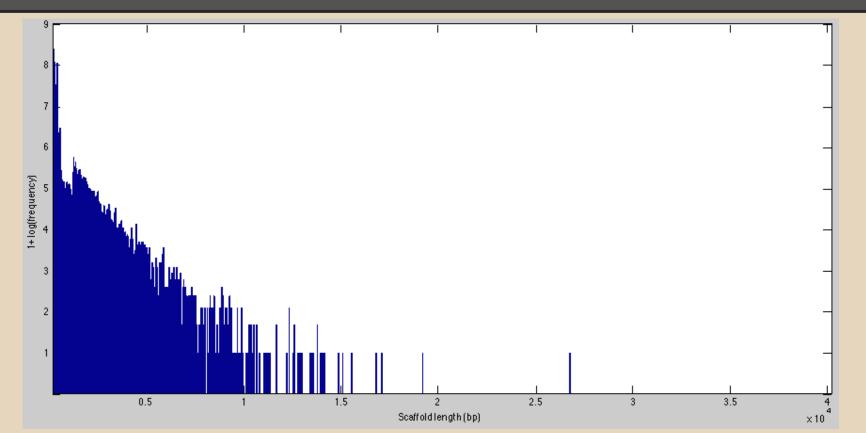
Assembly runs

	50% Run	50% UCSF Run
Input bases	31.6 Gb	31.9 Gb
Input reads	263,835,400	132,012,218
Avg read length	120	242
Avg base quality	36.7	33.0

Downsampled runs:


 50% of 2x100bp SW018/19, and MiSeq SW019 data
 50% of 2x250bp SW018 and SW019 data (UCSF)

Assembly results

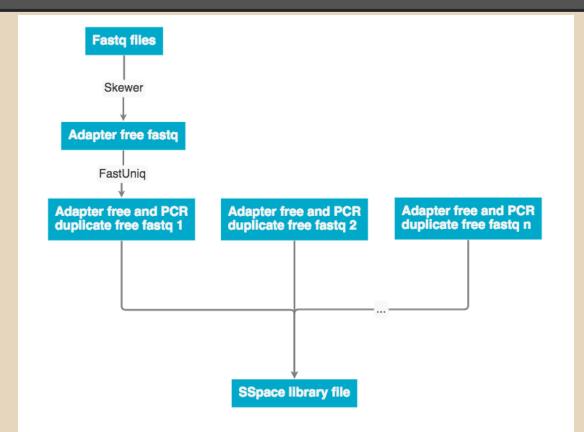

	50% Run	50% UCSF Run
Input bases	31.6 Gb	31.9 Gb
Input reads	263,835,400	132,012,218
Avg read length	120	242

	50% Run	50% UCSF Run
Runtime (hrs)	8.53	14.9
Peak memory usage (GB)	220.11	184.09
Bases in 1+ kb scafs	101,397,871	1,528,625,509
Bases in 10+ kb scafs	151,417	137,959,107
Mean position of first error	7	156
Contig N50	1,489	3,979
Scaffold N50	1,489	3,979

Scaffold histogram with 2x100 reads

Scaffold histogram with 2x250 reads

Assembly results: BLAST, 1st longest scaffold


34857nt

Species	Common name/ known feature	E-value	Identity	Notes
Cicer arietinum	Chickpea	0.11	100%	Tryptophan synthase
Strongyloides papillosus	Parasitic nematode	0.4	100%	genome assembly S_papillosus_LIN, scaffold

Assembly results: BLAST, 8th longest scaffold

Species	Common name/known feature	E- value	Identity	Notes
Pred – Aplysia californica transcript variant X2	Sea hare	6e-19	83%	Transcript variant
Pred – Aplysia californica transcript variant X2	Sea hare	6e-19	83%	Transcript variant
Helix pomatia	Roman snail	4e-15	81%	Metallothi onein gene

SSpace scaffolding

SSpace library file

- Lib file has a simple format
- One line for each mate pair library

Lib1 bwa /campusdata/BME235/Spring2015Data/SW041.r1.trimmed.fastq /campusdata/BME235/Spring2015Data/SW041.r2.trimmed.fastq 3500 .5 R Lib2 bwa /campusdata/BME235/Spring2015Data/SW042.r1.trimmed.fastq /campusdata/BME235/Spring2015Data/SW042.r2.trimmed.fastq 6500 .5 RF

- For future runs consider adding the Lucigen library

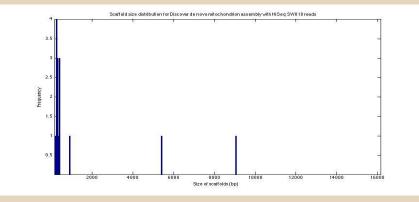
SSpace results

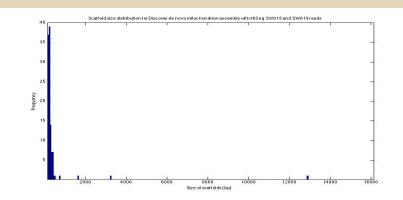
-No change in scaffold N50 -Change in number of 'N's

- 51,400 before scaffolding
- 169,013 after Lib 1
- 227,375 after Lib 2

2012 draft mitochondrion assembly

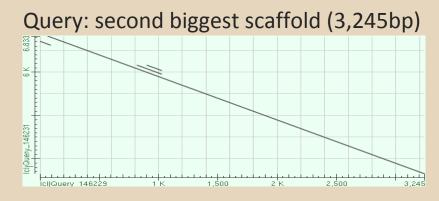
- Draft assembly by Kevin Karplus
- General method: iteratively mapping reads, reassembling
- May contain extra repeat regions
- Difficulty with high vs. low coverage regions

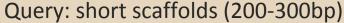

2015 Methods

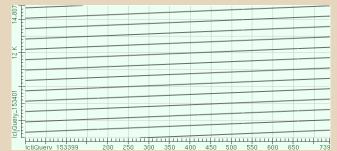

- Collected reads that mapped to the 2012 mitochondrion assembly
- Tried Discovar *de novo* using SW018 and SW019 HiSeq reads
- Currently trying Price using HiSeq SW018

Results

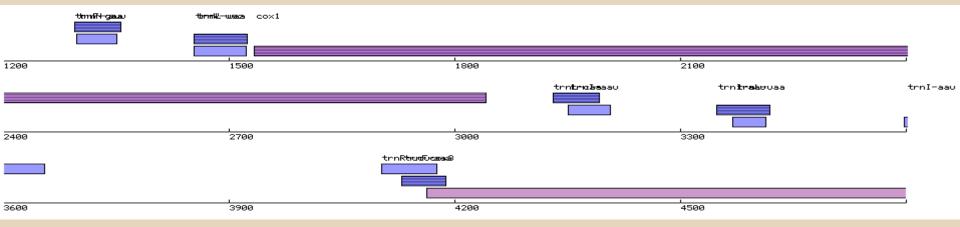
Assembly	Total bases	# contigs	# scaffolds	Longest scaffold	Scaffold N50	Scaffold N50	Bases in 1kb+ scaffolds	Bases in 10kb+ scaffolds	Coverage
Cepacea	14,100	-	-	-		-	-	-	-
Albanaria	14,130	-	-	-		-	-	-	-
Draft assembly	23,642	-	1	-		-	-	-	Ranges from 20-2300X
Discovar <i>de</i> <i>novo</i> SW018	18,983	29	29	9,041	9,041	9,041	14,048	0	Avg of 60X
Discovar <i>de</i> <i>novo</i> SW018 & SW019	46,248	110	110	12,884	12,883	12,883	17,173	12,684	Avg of 410.9X
Price SW018	20,106	25	-	2806	919	-	ТВА	ТВА	ТВА


Distribution of scaffold sizes



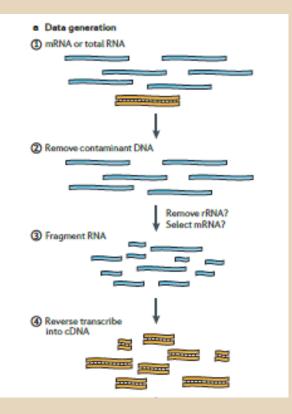


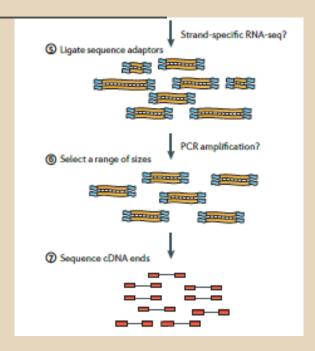
Discovar de novo vs. 2012 assembly



COX1 gene sequence

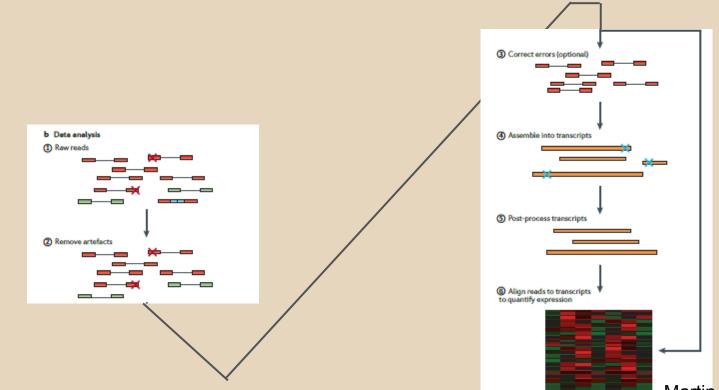
- Standard barcoding gene
- Used blastn & DOGMA




Did we really sequence *A. dollicophalus*?

No published mitochondrion sequences are available.

But we have sequenced the same organism as was sequenced in previous years.


Next steps: RNA-seq recap

Martin and Wang, 2011

Next steps

Martin and Wang, 2011

Next steps: de novo transcriptome assembly?

In Martin and Wang, 2011 the strategies to assembly the RNA-seq data include:

- 1) Generate all the substrings of length k
- 2) Generate the de Bruijn graph
- 3) Collapse the De Bruijn graph
- 4) Traverse the graph
- 5) assemble isoforms

Similar to assembling a whole genome

They mention that TransAbyss, Rnnotator and Multiple-k use the De Bruijn strategy to reconstruct transcripts

Martin and Wang, 2011

Next steps: de novo transcriptome assembly?

Bowtie, BMA and TopHat are programs used to align reads against a reference. Maybe we could:

- Compare gene expression tissue-specific (albumen, proximal albumen and penis)
- Compare slugs' genes levels with other molluscs, using the scaffolds we generated.