
Meraculous
De Novo Assembly of the
Ariolimax dolichophallus Genome
Charles Cole, Jake Houser, Kyle McGovern, and Jennie Richardson

The Meraculous Hash
What critics are saying:

http://www.homolog.us/blogs/blog/2012/10/02/perfect-hash-algorithm-of-meraculous-assembler/

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023501

The Meraculous Hash
Stated Goals
● Don’t store keys
● Perfect, static hash
● Each value is [ACTG][ACTG] representing the unique forward and

backwards extensions
● Only hash kmers that have U-U extensions

The Meraculous Hash
The Implementation

The Meraculous Hash
● Irrelevant?
● Current version of Meraculous is 2.0.5, 4 years newer than the

paper
● No mention of “novel lightweight hash” in documentation or website
● What does the source code say?
● No mention of any of the hash functionality they described in the

original paper

The Meraculous Hash
● Distributed hash tables
● Multithreaded generation of hash table files using boost
● Output a number of UFX.N files where N is a 3-4 nucleotide string

The Meraculous Hash
● 73 GB of UFX files from our completed run
● What do these files look like?
● Each file contains lines of:

○ [kmer] [ACTG][ACTG]

The Meraculous Hash
● What about memory usage?
● We still have to look up kmers in the hash to traverse the deBruijn

graph
● Memory usage is worse than the original implementation because

we hash ALL extensions, not just U-U
● Packed value storage to reduce kmer footprint
● Each kmer is divided into chunks of 4-nucleotide blocks and then

converted to an int that uniquely maps that block
● Hash stores the packed kmer, value

User Experience
Update:
● SGE memory issue resolved
● Modified program so that minimum coverage

is not needed
● Program can now produce contigs
● Program fails at the bubble-popping step

Memory issues
● Program was dieing during the kmer

counting stage due to uncompleted jobs
● testing of the code revealed that qsub can’t

be run with the “-w e” option while specifying
the mem_free resource

Coverage issues

Contigs

Bubble-popping

Results so far
Summary statistics of contigs before bubble popping:
28,610,138 total contigs
542,137 (1.89%) contigs > 1000bp
15 (5.2e-5%) contigs > 10,000bp

Error Correction- Quake
● Should have results soon, program is running, lots of packages to install

and requires jellyfish to run correctly. Will post kmergenie results to see if
musket error correction is better/worse.

● Like musket, classifies kmers as trusted or untrusted, but counts “q-mers”
rather than kmers which are just kmers with quality scores magically
weighted in.

● Three steps: q-mer counting (with jellyfish), cut-off calculation and finally
error correction.

Error Correction - BLESS
● BLoom-filter-based Error correction Solution for high-throughput

Sequencing reads
● Uses a single minimum-sized Bloom filter (a space-efficient

probabilistic data structure)
● Still compiling

○ New version came out yesterday
○ Current problem:
“correct_errors.cpp:949:62: error: invalid conversion from ‘const
void*’ to ‘void*’ [-fpermissive]

 MPI_File_write_at(f_out, write_offset, mmap.data(), residue,
MPI_CHAR, &status)”

Error Correction - Racer
● Rapid and Accurate Correction of Errors in Reads
● Uses k-mer counts

○ k-mers with counts above threshold are deemed correct
○ Different approach than Musket, BLESS and Quake,

which use k-mer spectrum
● Not available online

○ Requested from Dr. Lucian Ilie
from the University of Western Ontario

○ Location: /campusdata/BME235/bin/racer

Preqc of new data
● Currently running

Next Steps
● Finish Meraculous’ bubble popping step
● Assess with CEGMA
● Re-run

○ New (error corrected) data
○ Incorporate scaffold from new mate-pair data

● Improve assembly with GapCloser and REAPR
● Meta-assembly
● Annotate genome
● Publish
● Rock banana slug t-shirts

