MIRA Internals

Michael Cusack
5/17/10
BME235
Purpose

- **Mimicking Intelligent Read Assembly**
 - "strategies used by human experts"

- **Difficult genomes**
 - Lots of **repeats** or other sequence aberrations

- **Hybrid Assembly**
 - Combing **several data types**
 - Using all available data
Data (That Can Be) Used

1. the **initial trace data**, representing the gel electrophoresis signal
2. the called nucleic acid **sequence** *(required)*
3. **position specific confidence values** for the called bases of the nucleic acid sequence
4. a stretch in each sequence marked as **HCR**
5. **general properties** like direction of the clone read and name of the sequencing template etc.
6. **special sequence properties** in different regions of a read (like sequencing vector, known standard repeat sequence and known SNP sites etc.) that have been tagged or marked.
Read Scanning (Fast Error Tolerant Pair-wise Comparisons)

Both are less sensitive than Smith-Waterman, but much faster.

DNA-Shift-AND
- $O(c*n)$, $c=$ # allowed errors
- Takes words from start, middle and end of read1 and searches each in read2
- Must find 2 of 3 to establish relationship

ZEBRA
- Transcribe, Divide, Reorganize, Concentrate and Conquer strategy
- Hashes each octet of bases (16-bit int) and creates hash index table
More Thorough Comparison to Establish Type of Relationship

- Once initial relationships are established, MIRA uses a **modified Smith-Waterman** algorithm to perform local alignment of overlap.

 - Uses **banding**

 - Uses information generated from DNA-SAND/ZEBRA
Building Graph

- Overlap alignment + complementary data (orientation, overlap region, score, etc) is called an **aligned dual sequences** (ADS) and kept in memory if passes S-W
- Good alternatives also kept

- ADS's create **weighted** (by score) **overlap graph(s)**
- Each unconnected graph is a possible contig
Iterative Process

- Start with **highest quality**
 - Each read is split into a **high confidence region (HCR)** and a **low confidence region (LCR)** by quality clipping
 - Only HCR bases are used to build **initial contigs**
 - LCR bases are used **cautiously**
Creating Contigs

Pathfinder
- Finds best nodes (those with highest scoring overlaps in HCRs)
 - Anchors
- Extends in such a way that the uncertainties of the consensus bases are lowest
- Uses an n, m-step recursive look-ahead algorithm to detect repeats

Contig Builder
- Once a path is decided each contig must be compiled and approved
- If a read along path is overall too different from existing consensus despite high scoring overlap, it is rejected and the pathfinder is run again from that point
According to the author:

One central pillar of the quality calculation in MIRA is the rule that independent observations of a base confirm this base better than non-independent observations. When a base was read from both directions, one can assume independence of observations: it's not the whole truth, but close enough. As a side note: observing a base with different sequencing technologies also constitutes independent observations.
Repeats

- Can be told when there are known repeated elements.
 - Such as ALU repeats in humans.

- When these regions(reads) are detected much stricter control mechanisms can be applied.

- When there is a discrepancy in a read matching a repeated element, signal processing of the trace is used to determine if the error is explainable.

- If percentage of unexplainable errors is greater than threshold (default: 1%), reads are rejected from consensus and returned to assembly graph.