MIRA Internals

Michael Cusack 5/17/10 BME235

Purpose

Mimicking Intelligent Read Assembly

 "strategies used by human experts"

• Difficult genomes • Lots of repeats or other sequence aberrations

Hybrid Assembly

 Combing several data types
 Using all available data

Data (That Can Be) Used

- 1. the **initial trace data**, representing the gel electrophoresis signal
- 2. the called nucleic acid sequence (required)
- **3. position specific confidence values** for the called bases of the nucleic acid sequence
- 4. a stretch in each sequence marked as HCR
- 5. general properties like direction of the clone read and name of the sequencing template etc.
- 6. special sequence properties in different regions of a read (like sequencing vector, known standard repeat sequence and known SNP sites etc.) that have been tagged or marked.

Read Scanning (Fast Error Tolerant Pair-wise Comparisons)

Both are less sensitive then Smith-Waterman, but much faster.

DNA-Shift-AND

- O(c*n), c=# allowed errors
- Takes words from start, middle and end of read1 and searches each in read2
- Must find 2 of 3 to establish relationship

ZEBRA

- Transcribe, Divide, Reorganize, Concentrate and Conquer strategy
- Hashes each octet of bases (16-bit int) and creates hash index table

More Thorough Comparison to Establish Type of Relationship

- Once initial relationships are established, MIRA uses a modified Smith-Waterman algorithm to perform local alignment of overlap
- Uses banding
- Uses information generated from DNA-SAND/ZEBRA

Building Graph

Overlap alignment + complementary data (orientation, overlap region, score, etc) is called an aligned dual sequences (ADS) and kept in memory if passes S-W
 Good alternatives also kept

ADS's create weighted (by score) overlap graph(s)

• Each unconnected graph is a possible contig

Iterative Process

- Start with highest quality
 - Each read is split into a high confidence region (HCR) and a low confidence region (LCR) by quality clipping
 - Only HCR bases are used to build initial contigs
 - LCR bases are used cautiously

Creating Contigs

Pathfinder

- Finds best nodes (those with highest scoring overlaps in HCRs)
 Anchors
- Extends in such a way that the uncertainties of the consensus bases are lowest
- Uses a n, m-step recursive look-ahead algorithm to detect repeats

Contig Builder

- Once a path is decided each contig must be compiled and approved
- If a read along path is overall too different from existing consensus despite high scoring overlap, it is rejected and the pathfinder is run again from that point

Independent Observations

According to the author: (from http://www.freelists.org/post/mira_talk/How-does-Mira-determine-quality-scores,2)

One central pillar of the quality calculation in MIRA is the rule that independent observations of a base confirm this base better that nonindependent observations. When a base was read from both directions, one can assume independence of observations: it's not the whole truth, but close enough. As a side note: observing a base with different sequencing technologies also constitutes independent observations.

Repeats

- Can be told when there are known repeated elements.
 O Such as ALU repeats in humans.
- When these regions/reads are detected much stricter control mechanisms can be applied.
- When there is a **discrepancy** in a read matching a repeated element, **signal processing of the trace** is used to determine if the error is **explainable**.
- If percentage of unexplainable errors is greater than threshold (default: 1%), reads are rejected from consensus and returned to assembly graph.