Assembly By Short Sequences

ABySS

e Developed at Canada’s Michael Smith Genome
Sciences Centre

e Developed in response to memory demands of
conventional DBG assembly methods

e Parallelizability

e |llumina recommended assembler for large genomes

Assembler Overview

e Break Reads into K-mers

e Find adjacency kmers ot

o overlap by k-1 bases | N
e Generate De Bruijn graph GRED
e Irim branches
e Pop bubbles @
e Output Contigs Gorerate oS>

Loading K-mers

For each input read of length |,
NPy J Read (I = 12):

(1 - k +1) k.-mers are generated by ATCATACATGAT
sliding a window of length k over the
read. k-mers (k = 9):

De Bruijn graph and two adjacent K- CATACATGA
mers are an edge of length k-1 in the ATACATGAT
graph.

- - ATCATACAT
Each K-mer will be a Vertex in the \TC LG

K-mer Hash Table

To distribute the de Bruijn “A single k-mer, or vertex, can

graph over a network of have up to eight edges—one for
computers we need to address every possible one-base

two issues. First, the location of extension, {A, C, G, T}, in either
a glven_k_—m_er must be . direction. This information can
deterministically and efficiently be efficiently stored in 8 bits per
computable from the sequence k-mer, where one bit represents

of _the k-m_er. Secor)d, the the presence or absence of each
adjacency information between edge.”

k-mers must be stored in a
manner that is independent of from ABySS: A parallel assembler for short
read sequence data

the actual location of the k-mer.”
doi: 10.1101/gr.089532.108

K-mer Adjacency

Distribute the sequences over a cluster of computer nodes.
The cluster node index of the k-mer is computed and the k-
mer is assigned to this node for storage in a hash table.

Each node announces the list of k-mers that it has to the

nodes that hold their possible extensions. =
Each node records if there are any extensions \';—IT[_I_!{‘ =
of the k-mers that it stores. — =

| []]

This forms the Adjacency information for k- ==
mers over a distributed de Bruijn graph —| %

De Bruijn graph

- GGACAIC

- GGACAGA

Certain Sequencing
errors will cause “tips”
to form in the graph.

ABYSS “prunes’” tips to
avoid erroneous reads
corrupting assembly.

Popping

Genetic variance in sample W
generates bubbles.

Popping bubbles removes T
variant sequence from i

assembly.
ABYSS saves the variant data. greOvss,

But wait there’s MORE!

e Find paths through the contig
adjacency graph that agree with
the distance estimates.

e Merge overlapping paths.

e Merge the contigs in these paths
and output the FASTA file.

Generate contigs

Paired Read Data is Cool

ParseAligns: Empirical DistanceEst: Estimate
fragment-size distribution distances between contigs

I :
0. 045 | L {
a4 L il | | Ee = Setot T S TERTETTITTTEEEREIERTPTRRRTREREN - = = = 7

DistanceEst:

Maximum Likelihood Estimator

1. Use the empirical paired- end size distribution.
Likelihood is used when describing a function of a parameter given an outcome

2. Maximize the likelihood function.
3. Find the most likely distance between the two contigs.

L(0|z) = P(z|#) L(0|z)= folz), L(0)= Hfa(illf)
i=1

Merge Paths

SimpleGraph: Find consistent paths

e

. \/ -O-8-0-0-00-0-8-0-0— . N O-0—8—0—0-0—8-0-8-0—0—
' 0 % *
= - * o -
+*
* ol . -
- * * e
_." "" - -

MergePaths: Merge overlapping paths

B
'I-'. '!
“4 L o .,
LEn T SO R ee TetieTeTh Tet e e i eletl Te el m Fel s te

User experience

Install, Run, Optimize, Parallelize

Dependencies:

e Google sparsehash: efficient hash
Implementation

e openmpi: enables parallel computing
o --with-sge
e boost: collection of C++ libraries

e Single Processor Version: Straight Forward
o qsub slug.x.sh
o embedded gsub options

o exporting paths
o abyss-pe [PARAMETERS]

e Parallel Processing Option: ...
o specify PE, number of processes (np)
o Sourcing issues? Administrative obstacles?

Parameters:

e Primary: e Secondary:
o name: name of assembly o n: min number of pairs required to
o k: size of k-mer join two contigs
o if 1 library of pe data: o c¢: mean k-mer coverage threshold
m in = ‘reads1.fq reads2.fq’ o q: trim ends w/ bases lower than
o else if multiple pe libs: specified quality score
m lib ='lib1 lib2’ o np: number of processes for mpi

O

m lib1 =‘reads1.1.fq reads1.2.fq’

m lib2 =‘reads2.1.fq reads2.2.fq" o
else:

m se = ‘reads.fq’

assembly
mp: mate-pair libraries

Convenience

e Pipeline organized via makefile: abyss-pe
o ensures dependencies are generated

o step-wise execution of Makefile enables easy

troubleshooting at any point in pipeline
o job can be stopped and resumed later

e tight integration of openmpi and sge

e auto generated assembly statistics
o contig, scaffold metrics

Output overview

Output files of ABySS

e ${name}-contigs.fa The final contigs in FASTA format

e ${name}-bubbles.fa The equal-length variant sequences (FASTA)
e ${name}-indel.fa The different-length variant sequences (FASTA)
e ${name}-contigs.dot The contig overlap graph in Graphviz format

Intermediate output files of ABySS

e .adj: contig overlap graph in ABySS adj format

e .dist: estimates of the distance between contigs in ABySS dist format
e .path: lists of contigs to be merged

e .hist: fragment-size histogram of a library

e coverage.hist: k-mer coverage histogram

Test Run:

e S. cerevisiae paired end library
o small tractable data set

ensure pipeline functions properly

provides an example of typical output

Parallelization

e distributed processing capabilities enable
rapid assembly of large genomes

e reduces the effects of individual machine
limitations

Using ABYSS

What we did

The Plan

e Use all libraries, after preprocessing
o (no error correction)

e Run for large range of k
o Nice, easy syntax for setting this up
o Big problem: Parallel version not working properly

e Determine best k retroactively
e Improve assembly

e [WO runs:

o Adapter trimming only
o Adapter trimming plus merging

e Kmergenie results: 77?7
e Future: Fastgc

e edser
e k=55 (arbitrary)

e -j option: allows many jobs
o didn’'t work, did without

e used SW018 and SW019_S1 (couldn’t copy
other files from campus rocks)

Initial run--Outcomes

e Parallel version not working
o loses much of the benefit of ABySS

e Running basic version is easy
e Results: TBA

To Do List

e Get parallel versions working
e Finish data analysis (kmergenie, fastgc, etc)

e Do assemblies for many ks with all data
o Including Lucigen data, new data

e Pick best assembly based on stats

e RNA-seq rescaffolding (with Trans-ABySS!)
e Meta-assembly

