
Assembly By Short Sequences

ABySS

ABySS
● Developed at Canada’s Michael Smith Genome

Sciences Centre
● Developed in response to memory demands of

conventional DBG assembly methods
● Parallelizability
● Illumina recommended assembler for large genomes

Assembler Overview
● Break Reads into K-mers
● Find adjacency kmers

○ overlap by k-1 bases
● Generate De Bruijn graph
● Trim branches
● Pop bubbles
● Output Contigs

Loading K-mers
For each input read of length l,
(l - k + 1) k-mers are generated by
sliding a window of length k over the
read.
Each K-mer will be a Vertex in the
De Bruijn graph and two adjacent K-
mers are an edge of length k-1 in the
graph.

K-mer Hash Table
“To distribute the de Bruijn
graph over a network of
computers we need to address
two issues. First, the location of
a given k-mer must be
deterministically and efficiently
computable from the sequence
of the k-mer. Second, the
adjacency information between
k-mers must be stored in a
manner that is independent of
the actual location of the k-mer.”

“A single k-mer, or vertex, can
have up to eight edges—one for
every possible one-base
extension, {A, C, G, T}, in either
direction. This information can
be efficiently stored in 8 bits per
k-mer, where one bit represents
the presence or absence of each
edge.”
from ABySS: A parallel assembler for short
read sequence data

doi: 10.1101/gr.089532.108

K-mer Adjacency

Each node records if there are any extensions
of the k-mers that it stores.
This forms the Adjacency information for k-
mers over a distributed de Bruijn graph

Distribute the sequences over a cluster of computer nodes.
The cluster node index of the k-mer is computed and the k-
mer is assigned to this node for storage in a hash table.
Each node announces the list of k-mers that it has to the
nodes that hold their possible extensions.

De Bruijn graph

Pruning
Certain Sequencing
errors will cause “tips”
to form in the graph.
ABySS “prunes” tips to
avoid erroneous reads
corrupting assembly.

Popping
Genetic variance in sample
generates bubbles.
Popping bubbles removes
variant sequence from
assembly.
ABySS saves the variant data.

But wait there’s MORE!
● Find paths through the contig

adjacency graph that agree with
the distance estimates.

● Merge overlapping paths.
● Merge the contigs in these paths

and output the FASTA file.

Paired Read Data is Cool
ParseAligns: Empirical
fragment-size distribution

DistanceEst: Estimate
distances between contigs

Maximum Likelihood Estimator
1. Use the empirical paired- end size distribution.
Likelihood is used when describing a function of a parameter given an outcome

2. Maximize the likelihood function.
3. Find the most likely distance between the two contigs.

DistanceEst:

Merge Paths
SimpleGraph: Find consistent paths

MergePaths: Merge overlapping paths

User experience
Install, Run, Optimize, Parallelize

Installing
Dependencies:
● Google sparsehash: efficient hash

implementation
● openmpi: enables parallel computing

○ --with-sge
● boost: collection of C++ libraries

Running
● Single Processor Version: Straight Forward

○ qsub slug.x.sh
○ embedded qsub options
○ exporting paths
○ abyss-pe [PARAMETERS]

● Parallel Processing Option: ...
○ specify PE, number of processes (np)
○ Sourcing issues? Administrative obstacles?

Parameters:
● Primary:

○ name: name of assembly
○ k: size of k-mer
○ if 1 library of pe data:

■ in = ‘reads1.fq reads2.fq’
○ else if multiple pe libs:

■ lib = ‘lib1 lib2’
■ lib1 = ‘reads1.1.fq reads1.2.fq’
■ lib2 = ‘reads2.1.fq reads2.2.fq’

○ else:
■ se = ‘reads.fq’

● Secondary:
○ n: min number of pairs required to

join two contigs
○ c: mean k-mer coverage threshold
○ q: trim ends w/ bases lower than

specified quality score
○ np: number of processes for mpi

assembly
○ mp: mate-pair libraries

Convenience
● Pipeline organized via makefile: abyss-pe

○ ensures dependencies are generated
○ step-wise execution of Makefile enables easy

troubleshooting at any point in pipeline
○ job can be stopped and resumed later

● tight integration of openmpi and sge
● auto generated assembly statistics

○ contig, scaffold metrics

Output overview
Output files of ABySS
● ${name}-contigs.fa The final contigs in FASTA format
● ${name}-bubbles.fa The equal-length variant sequences (FASTA)
● ${name}-indel.fa The different-length variant sequences (FASTA)
● ${name}-contigs.dot The contig overlap graph in Graphviz format

Intermediate output files of ABySS
● .adj: contig overlap graph in ABySS adj format
● .dist: estimates of the distance between contigs in ABySS dist format
● .path: lists of contigs to be merged
● .hist: fragment-size histogram of a library
● coverage.hist: k-mer coverage histogram

Test Run:
● S. cerevisiae paired end library

○ small tractable data set
○ ensure pipeline functions properly
○ provides an example of typical output

Parallelization
● distributed processing capabilities enable

rapid assembly of large genomes
● reduces the effects of individual machine

limitations

Using ABySS
What we did

The Plan
● Use all libraries, after preprocessing

○ (no error correction)
● Run for large range of k

○ Nice, easy syntax for setting this up
○ Big problem: Parallel version not working properly

● Determine best k retroactively
● Improve assembly

SeqPrep
● Two runs:

○ Adapter trimming only
○ Adapter trimming plus merging

● Kmergenie results: ???
● Future: Fastqc

Initial run
● edser
● k=55 (arbitrary)
● -j option: allows many jobs

○ didn’t work, did without
● used SW018 and SW019_S1 (couldn’t copy

other files from campus rocks)

Initial run--Outcomes
● Parallel version not working

○ loses much of the benefit of ABySS
● Running basic version is easy
● Results: TBA

To Do List
● Get parallel versions working
● Finish data analysis (kmergenie, fastqc, etc)
● Do assemblies for many ks with all data

○ Including Lucigen data, new data
● Pick best assembly based on stats

Future ideas
● RNA-seq rescaffolding (with Trans-ABySS!)
● Meta-assembly

